lunes, 12 de agosto de 2019

ecuacions diferencials lineals

d_{tt}[ z( af(t) ) [o(t)o] f(t)^{[o(t)o](-1)}) ]=(-1)a^{2}·z( af(t) )d_{t}[f(t)]


d_{tt}[ sin( af(t) ) [o(t)o] f(t)^{[o(t)o](-1)}) ]=...
...d_{t}[ cos( af(t) )a ]=...
...(-1)a^{2}·sin( af(t) )d_{t}[f(t)]


d_{tt}[ z( at ) ]=(-1)a^{2}·z( at )






d_{tt}[ d_{t}[ z( af(t) ) [o(t)o] f(t)^{[o(t)o](-1)}) ] [o(t)o] f(t)^{[o(t)o](-1)}) ]=...
...(-1)a^{3}·z( af(t) )d_{t}[f(t)]


d_{tt}[ d_{t}[ red( af(t) ) [o(t)o] f(t)^{[o(t)o](-1)}) ] [o(t)o] f(t)^{[o(t)o](-1)}) ]=...
d_{tt}[ blue( af(t) )a [o(t)o] f(t)^{[o(t)o](-1)}) ]=...
...d_{t}[ yel( af(t) )a^{2} ]=...
...(-1)a^{3}·red( af(t) )d_{t}[f(t)]


d_{ttt}[ z( at ) ]=(-1)a^{3}·z( at )

No hay comentarios:

Publicar un comentario