sábado, 30 de octubre de 2021

música: sinfoníes: número 1 y número 2. La Trip del Dr.Guery

Sinfonía número 1: [ 12+12 ]

[00+01][00+04][00+04][00+04] = 13k

[00+04][00+07][00+07][00+07] = 25k = 5·5·k

[00+07][00+10][00+10][00+10] = 37k

[00+10][12+01][12+01][12+01] = 49k = 7·7·k

[00+01][00+01][00+04][00+04] = 10k = 2·5·k

[00+04][00+04][00+07][00+07] = 22k = 2·11·k

[00+07][00+07][00+10][00+10] = 34k = 2·17·k

[00+10][00+10][12+01][12+01] = 46k = 2·23·k


Sinfonía número 1: [ 12+12 ]

[00+01][00+02][00+02][00+02] = 07k

[00+04][00+05][00+05][00+05] = 19k

[00+07][00+08][00+08][00+08] = 31k

[00+10][00+11][00+11][00+11] = 43k

[00+01][00+01][00+02][00+02] = 06k = 2·3·1·k

[00+04][00+04][00+05][00+05] = 18k = 2·3·3·k

[00+07][00+07][00+08][00+08] = 30k = 2·3·5·k

[00+10][00+10][00+11][00+11] = 42k = 2·3·7·k


Sinfonía número 2: [ 4+20 <==> 4+(5+4) = 13 ]

[00+01][00+05][00+08][00+05] = 19k

[00+01][00+06][00+10][00+06] = 23k

[00+07][00+11][12+02][00+11] = 43k

[00+07][00+12][12+04][00+12] = 47k

[00+01][00+08][00+01][00+04] = 14k = 2·7·k

[00+01][00+10][00+01][00+06] = 18k = 2·3·3·k

[00+07][12+02][00+07][00+10] = 38k = 2·19·k

[00+07][12+04][00+07][00+12] = 42k = 2·3·7·k


Sinfonía número 2: [ 3+21 <==> 3+(7+3) = 13 ]

[00+01][00+05][00+08][00+05] = 19k

[00+01][00+06][00+09][00+06] = 22k = 2·11·k

[00+07][00+11][12+02][00+11] = 43k

[00+07][00+12][12+03][00+12] = 46k = 2·23·k

[00+01][00+08][00+01][00+04] = 14k = 2·7·k

[00+01][00+09][00+01][00+06] = 17k

[00+07][12+02][00+07][00+10] = 38k = 2·19·k

[00+07][12+03][00+07][00+12] = 41k


La Trip del Dr.Guery:

( ¬p <==> 5q ):

Tot negres + [00+12]:

[00+11][00+04][00+09][00+04][00+07][00+04][00+00][00+04] = 43k

[12+02][00+07][00+12][00+07][00+11][00+07][00+00][00+07] = 65k = 5·23·k

[00+09][00+02][00+07][00+02][00+09][00+02][00+00][00+02] = 33k = 3·11·k

[12+04][00+04][00+12][00+04][00+11][00+04][00+00][00+04] = 55k = 5·11·k

Tot blanques + [12+06]:

[12+05][00+10][12+03][00+10][12+01][00+10][00+00][00+10] = 85k = 5·17·k

[12+08][12+01][12+06][12+01][12+05][12+01][00+00][12+01] = 107k

[12+03][00+08][12+01][00+08][12+03][00+08][00+00][00+08] = 75k = 3·5·5·k

[12+10][00+10][12+06][00+10][12+05][00+10][00+00][00+10] = 97k


[00+11][00+04][00+09][00+04][00+07][00+04][00+09][00+04] = 52k = 4·13·k

[12+02][00+07][00+12][00+07][00+11][00+07][00+12][00+07] = 77k = 7·11·k

[00+09][00+02][00+07][00+02][00+09][00+02][00+07][00+02] = 40k = 8·(5·1)·k

[12+04][00+04][00+12][00+04][00+11][00+04][00+12][00+04] = 67k


[12+05][00+10][12+03][00+10][12+01][00+10][12+03][00+10] = 100k = 4·(5·5)·k

[12+08][12+01][12+06][12+01][12+05][12+01][12+06][12+01] = 125k = (5·5)·(5·1)·k

[12+03][00+08][12+01][00+08][12+03][00+08][12+01][00+08] = 88k = 8·11·k

[12+10][00+10][12+06][00+10][12+05][00+10][12+06][00+10] = 115k = 5·23·k

viernes, 29 de octubre de 2021

computació

for( [k] = 1 ; [k] [< n ; [k]++ )

funcions[k](x,y);

for( [k] = not(1) ; [k] [< not(n) ; [k]-- )

funcions[k](x,y);


Mov bx,n

Mov ax,[bx]

Not ax

Not ax

Mov bx, funcions[0]

Inc bx

Xor cx,cx

Inc cx

cicle

Push bx

Push ax

Push cx

Mov si,x

Mov di,[si]

Push di

Mov si,y

Mov di,[si]

Push di

Call [bx]

Pop di

Mov si,y

Mov [si],di

Pop di

Mov si,x

Mov [si],di

Pop cx

Pop ax

Pop bx

Push cx

Xor cx,ax

Jz final

Pop cx

Inc cx

Inc bx

Jmp cicle

final


Mov bx,not(n)

Mov ax,[bx]

Not ax

Mov bx, funcions[not(0)]

Dec bx

Sys cx,cx

Dec cx

cicle

Push bx

Push ax

Push cx

Mov si,x

Mov di,[si]

Push di

Mov si,y

Mov di,[si]

Push di

Call [bx]

Pop di

Mov si,y

Mov [si],di

Pop di

Mov si,x

Mov [si],di

Pop cx

Pop ax

Pop bx

Push cx

Sys cx,ax

Jf final

Pop cx

Dec cx

Dec bx

Jmp cicle

final


funcions[1]( int x, int y )

{

print("%d",[x]+[y]);

[x] = not([x]);

[y] = [y];

}

funcions[2]( int x, int y )

{

print("%d",[x]+[y]);

[x] = [x];

[y] = not([y]);

}

funcions[3]( int x, int y )

{

print("%d",[x]+[y]);

[x] = not([x]);

[y] = [y];

}

funcions[4]( int x, int y )

{

print("%d",[x]+[y]);

[x] = [x];

[y] = not([y]);

}


funcions[not(1)]( int x, int y )

{

print("%d",[x]·[y]);

[x] = not([x]);

[y] = [y];

}

funcions[not(2)]( int x, int y )

{

print("%d",[x]·[y]);

[x] = [x];

[y] = not([y]);

}

funcions[not(3)]( int x, int y )

{

print("%d",[x]·[y]);

[x] = not([x]);

[y] = [y];

}

funcions[not(4)]( int x, int y )

{

print("%d",[x]·[y]);

[x] = [x];

[y] = not([y]);

}


for( [k] = 1 ; [k] [< 4 ; [k]++ )

funcions[k](x,y);

for( [k] = not(1) ; [k] [< not(4) ; [k]-- )

funcions[k](x,y);


funcions[1]( int m, int n , int p , int q )

{

print("%d / %d",( [m]·[q]+[p]·[n] ),( [n]·[q] ));

[m] = not([m]);

[n] = [n];

[p] = [p];

[q] = [q];

}

funcions[2]( int m, int n , int p , int q )

{

print("%d / %d",( [m]·[q]+[p]·[n] ),( [n]·[q] ));

[m] = [m];

[n] = [n];

[p] = not([p]);

[q] = [q];

}

funcions[3]( int m, int n , int p , int q )

{

print("%d / %d",( [m]·[q]+[p]·[n] ),( [n]·[q] ));

[m] = not([m]);

[n] = [n];

[p] = [p];

[q] = [q];

}

funcions[4]( int m, int n , int p , int q )

{

print("%d / %d",( [m]·[q]+[p]·[n] ),( [n]·[q] ));

[m] = [m];

[n] = [n];

[p] = not([p]);

[q] = [q];

}

jueves, 28 de octubre de 2021

bombons, valor absolut, psíquica y ecuació de continuitat

Bombó Café exprés-A:

licor destilat [ vapor ] de café amb molta llet.

txocolata amb poca llet.

Bombó Café exprés-B:

licor destilat [ vapor ] de café amb poca llet.

txocolata amb molta llet.


Bombó Planeta:

Nucli de avellana.

Magma de txocolata-A.

Escorça de galeta.

Mar de txocolata-B.

Muntanyes de atmella.


valor absolut:

(-s) < x < s <==> |x| < s

[==>]

Sigui x >] 0 ==>

x < s

(-s) < (-x) [< x < s

|(-s)| > |(-x)| = |x| < s

Sigui x [< (-0) ==>

(-s) < x

(-s) < x [< (-x) < s

|(-s)| > |x| = |(-x)| < s

[<==]

|x| < s

Sigui x >] 0 ==>

(-s) < (-x) [< x [< |x| < s

Sigui x [< 0 ==>

(-s) < x [< (-x) [< |x| < s


Psíquica:

Radiació paranoide física:

corrents elíptics en el cervell-físic.

f(t) = cos(t)+sin(t)

g(t) = cos(t)+(-1)·sin(t)

f(t)·g(t) = cos(2t)

Ecuació de neuro-transmisor-físic forçat:

d_{tt}^{2}[E(t)]+k^{2}·E(t) = anti-div[A(x,y,z)]·c^{2}·cos(2t)

E(t) = anti-div[A(x,y,z)]·c^{2}·( 1/(k^{2}+(-4)) )·cos(2t)


Radiació paranoide psíquica:

corrents hiperbólics en el cervell-psíquic.

f(t) = cosh(t)+i·sinh(t)

g(t) = cosh(t)+(-i)·sinh(t)

f(t)·g(t) = cosh(2t)

Ecuació de neuro-transmisor-psíquic forçat:

d_{tt}^{2}[E(t)]+(ik)^{2}·E(t) = anti-div[A(x,y,z)]·c^{2}·cosh(2t)

E(t) = anti-div[A(x,y,z)]·c^{2}·( 1/((ik)^{2}+4) )·cosh(2t)


corrents elíptics en el cervell-psíquic.

f(t) = cos(t)+i·sin(t)

g(t) = cos(t)+(-i)·sin(t)

f(t)·g(t) = 1

Ecuació de neuro-transmisor-psíquic forçat:

d_{tt}^{2}[E(t)]+(ik)^{2}·E(t) = anti-div[A(x,y,z)]·c^{2}

E(t) = anti-div[A(x,y,z)]·c^{2}·(1/(ik)^{2})


corrents hiperbólics en el cervell-físic.

f(t) = cosh(t)+sinh(t)

g(t) = cosh(t)+(-1)·sinh(t)

f(t)·g(t) = 1

Ecuació de neuro-transmisor-físic forçat:

d_{tt}^{2}[E(t)]+k^{2}·E(t) = anti-div[A(x,y,z)]·c^{2}

E(t) = anti-div[A(x,y,z)]·c^{2}·(1/k^{2})


d_{tt}^{2}[E(t)]+k^{2}·E(t) = anti-div[A(x,y,z)]·c^{2}·( cos(t)+i·sin(t) )

E(t) = anti-div[A(x,y,z)]·c^{2}·( 1/(k^{2}+(-1)) )·( cos(t)+i·sin(t) )

d_{tt}^{2}[E(t)]+k^{2}·E(t) = anti-div[A(x,y,z)]·c^{2}·( cos(t)+(-i)·sin(t) )

E(t) = anti-div[A(x,y,z)]·c^{2}·( 1/(k^{2}+(-1)) )·( cos(t)+(-i)·sin(t) )


Ecuació de continuitat cinemática:

d_{t}[A(t)] = c·div[ A(x,y,z) ]

A_{x}(x,y,z) = a·f(x) = a·f(vt)

A_{y}(x,y,z) = a·f(y) = a·f( (1/2)·gt^{2} )

A_{z}(x,y,z) = a·f(z) = a·f(vt)

A(t) = ac·f(vt)·(1/v)+ac·f( (1/2)·gt^{2} )·(1/gt)+ac·f(vt)·(1/v)

war-game

Salvació:

2 Dadets de 6 cares.

( 4+ & 4+ ) <==> P(4) = (1/2) & P(4) = (1/2)

( 5+ & 3+ ) <==> P(5) = (1/3) & P(3) = (2/3)

( 6 & 2+ ) <==> P(6) = (1/6) & P(2) = (5/6)


Ametralladora:

trets: 5

tipus de dispar: lineal

Lleugera:

salvació: ( 4+ & 4+ )

Pesada:

salvació: ( 5+ & 3+ )

de asalt:

salvació: ( 6 & 2+ )


Llanza-granades:

trets: plantilla de radi: r = 5·cm

tipus de dispar: parabólic

Lleugera:

salvació: ( 4+ & 4+ )

Pesada:

salvació: ( 5+ & 3+ )

de asalt:

salvació: ( 6 & 2+ )


Ametralladora láser:

trets: 10

tipus de dispar: lineal

Lleugera:

salvació: ( 4+ & 4+ )

Pesada:

salvació: ( 5+ & 3+ )

de asalt:

salvació: ( 6 & 2+ )


Llanza-granades de plasma-fusió:

trets: plantilla de radi: r = 10·cm

tipus de dispar: parabólic

Lleugera:

salvació: ( 4+ & 4+ )

Pesada:

salvació: ( 5+ & 3+ )

de asalt:

salvació: ( 6 & 2+ )

miércoles, 27 de octubre de 2021

màxims y mínims, dualogía

teorema:

max{n: f(n) = n+p } = max{n: f(n) = n }+p

min{n: f(n) = n+p } = min{n: f(n) = n }+p

teorema:

sup{n: f(n) = n+p } = sup{n: f(n) = n }+p

inf{n: f(n) = n+p } = inf{n: f(n) = n }+p

demostració per absurd:

max{n: f(n) = n+p } != max{n: f(n) = n }+p

n [< max{n: f(n) = n }

n+p [< max{n: f(n) = n }+p = a < max{n: f(n) = n+p }

n+p [< a < max{n: f(n) = n+p }

n+p [< max{n: f(n) = n+p } = b+p < max{n: f(n) = n }+p

n [< b < max{n: f(n) = n }


Dualogía paralela a una funció:

f(x+cos(s)·h)+f(x+(-1)·cos(s)·h) = F(x)

g(a)+y(a) = 0


( x+cos(s)·h )+( x+(-1)·cos(s)·h ) = 2x

g(0) = (cos(s)·h)

y(0) = (-1)·(cos(s)·h)


( x+cos(s)·h )^{2}+( x+(-1)·cos(s)·h )^{2} = 2·(x+i·cos(s)·h)·(x+(-i)·cos(s)·h)

g(i·cos(s)·h) = 2i·(cos(s)·h)

y(i·cos(s)·h) = (-2)·i·(cos(s)·h)


( x+cos(s)·h )^{3}+( x+(-1)·cos(s)·h )^{3} = 2·x·(x^{2}+3(cos(s)·h))

g(i·3^{(1/2)}·(cos(s)·h)^{(1/2)}) = (-8)·(cos(s)·h)^{3}

y(i·3^{(1/2)}·(cos(s)·h)^{(1/2)}) = 8·(cos(s)·h)^{3}


( x+cos(s)·h )^{4}+( x+(-1)·cos(s)·h )^{4} = ...

... 2·( ( x^{2}+(cos(s)·h)^{2} )^{2}+4x^{2}·(cos(s)h)^{2} )

x^{2}+2i·x·(cos(s)·h)+(cos(s)·h)^{2} = 0

x = ((-1)+2^{(1/2)})·i·(cos(s)·h)

( (-1)+2^{(1/2)} )^{4}·i^{4} = 1+(-4)·2^{(1/2)}+6·2+(-4)·2^{(3/2)}+4

6·( (-1)+2^{(1/2)} )^{2}·i^{2} = 6·( (-1)+2·2^{(1/2)}+(-2) )

g( ((-1)+2^{(1/2)})·i·(cos(s)·h) ) = ...

... ((-1)+2^{(1/2)})·i·(cos(s)·h)^{4}+(-1)·((-1)+2^{(1/2)})^{3}·i·(cos(s)·h)^{4}

y( ((-1)+2^{(1/2)})·i·(cos(s)·h) ) = ...

... (-1)·((-1)+2^{(1/2)})·i·(cos(s)·h)^{4}+((-1)+2^{(1/2)})^{3}·i·(cos(s)·h)^{4}


En símbol de polinómic potencial:

( x+cos(s)·h )^{7}+( x+(-1)·cos(s)·h )^{7} = ...

... 2·x·( x^{6}+21x^{4}(cos(s)·h)^{2}+35x^{2}(cos(s)·h)^{4}+7·(cos(s)·h)^{6} )

(-7)·( cos(s)·h )^{6} = ...

x^{4+[...( 21·(cos(s)·h)^{2} )...[2]...( 21·(cos(s)·h)^{2} )...]}+35x^{2}(cos(s)·h)^{4} = ...

x^{2+[...( 35·(cos(s)·h)^{4} )...[...

... 2+[...( 21·(cos(s)·h)^{2} )...[2]...( 21·(cos(s)·h)^{2} )...]...

... ]...( 35·(cos(s)h)^{4} )...]}

x = ( (-7)·(cos(s)·h)^{6} )^{( 1/( 2+[...( 35·(cos(s)·h)^{4} )...[...

... 2+[...( 21·(cos(s)·h)^{2} )...[2]...( 21·(cos(s)·h)^{2} )...]...

... ]...( 35·(cos(s)h)^{4} )...] ) )}


x^{7}+21x^{5}(cos(s)·h)^{2} = ...

... ( (-7)·(cos(s)·h)^{6} )^{( ...

... ( 5+[...( 21·(cos(s)·h)^{2} )...[2]...( 21·(cos(s)·h)^{2} )...] )/...

... ( 2+[...( 35·(cos(s)·h)^{4} )...[...

... 2+[...( 21·(cos(s)·h)^{2} )...[2]...( 21·(cos(s)·h)^{2} )...]...

... ]...( 35·(cos(s)h)^{4} )...] ) )}

x^{7}+21x^{5}(cos(s)·h)^{2}+35x^{3}(cos(s)·h)^{4} = ...

... ( (-7)·(cos(s)·h)^{6} )^{( ...

... ( 3+[...( 35·(cos(s)·h)^{4} )...[...

... 2+[...( 21·(cos(s)·h)^{2} )...[2]...( 21·(cos(s)·h)^{2} )...]...

...]...( 35·(cos(s)·h)^{4} )...] )/...

... ( 2+[...( 35·(cos(s)·h)^{4} )...[...

... 2+[...( 21·(cos(s)·h)^{2} )...[2]...( 21·(cos(s)·h)^{2} )...]...

... ]...( 35·(cos(s)h)^{4} )...] ) )} = ...

x^{7}+21x^{5}(cos(s)·h)^{2}+35x^{3}(cos(s)·h)^{4} = ...

... (-7)·(cos(s)·h)^{6}·( (-7)·(cos(s)·h)^{6} )^{( 1/( 2+[...( 35·(cos(s)·h)^{4} )...[...

... 2+[...( 21·(cos(s)·h)^{2} )...[2]...( 21·(cos(s)·h)^{2} )...]...

... ]...( 35·(cos(s)h)^{4} )...] ) )}

françé

Françé:

ye parle ye-de-muá

tú parle tú-de-tuá

parle pont-de-suá

nus parloms

vus parloz

parlen pont-de-suá

Françé de le Patuá:

ye parlû-puá

tú parles-puá

parle-puá

nus parlems-de-puá

vus parlez-de-puá

parlen-puá


Françé:

ye vatxne ye-de-muá

tú vatxne tú-de-tuá

vatxne pont-de-suá

nus vatxnoms

vus vatxnoz

vatxnen pont-de-suá

Françé de le Patuá:

ye vaitx-de-puá

tú vas-de-puá

va-de-puá

nus vatxnems-de-puá

vus vatxnez-de-puá

vatxnen-puá


Françé:

ye pode ye-de-muá

tú pode tú-de-tuá

pode pont-de-suá

nus podoms

vus podoz

poden pont-de-suá

Françé de le Patuá:

ye puc-de-puá

tú pots-de-puá

pot-de-puá

nus podems-de-puá

vus podez-de-puá

poden-puá


Françé:

ye vule ye-de-muá

tú vule tú-de-tuá

vule pont-de-suá

nus vuloms

vus vuloz

vulen pont-de-suá

Françé de le Patuá:

ye vull-de-puá

tú vols-de-puá

vol-de-puá

nus vulems-de-puá

vus vulez-de-puá

vulen-puá

martes, 26 de octubre de 2021

limits

x^{n+1}+(-1) = (x+(-1))·(1+x+...(n)...+x^{n})

A(x) = ( (x^{(n+1)}+(-1))/(x+(-1)) )

A(1) = (n+1)

E(x) = ( ((n+1)·x^{n})/(x+(-1)) )+(-1)·( (x^{(n+1)}+(-1))/(x+(-1))^{2} )

E(1) = 0

A(x) = ( (x^{n+1}+(-1))/(x^{m}+(-1)) )

A(1) = ( (n+1)/m )

E(x) = ( ((n+1)·x^{n})/(x^{m}+(-1)) )+...

... (-1)·( (x^{(n+1)}+(-1))/(x^{m}+(-1))^{2} )·mx^{m+(-1)}

E(1) = 0


Tecnología industrial:

PV

kT

qA

qRI

hf

qgx

(1/2)·ax^{2}

(4/3)·Px^{3}

Px^{2}y

(2s)·x^{4}

s·x^{2}yz


(-1)·ln(1+(-x)) = x+...(n)...+(1/n)·x^{n}+...

(-1)·ln(1+x) = (-x)+...(n)...+(-1)^{n}·(1/n)·x^{n}+...