martes, 24 de septiembre de 2024

ecuaciones-de-Maxwell y transformadas-integrales y especies-combinatorias y economía

Principio:

E_{g}(x,y,z) = (-1)·qk·(1/r)^{3}·< x,y,z >

B_{g}(d_{t}[x],d_{t}[y],d_{t}[z]) = qk·(1/r)^{3}·< d_{t}[x],d_{t}[y],d_{t}[z] >

Principio:

E_{g}(yz,zx,xy) = (-1)·qk·(1/r)^{4}·< yz,zx,xy >

B_{g}(d_{t}[yz],d_{t}[zx],d_{t}[xy]) = qk·(1/r)^{4}·< d_{t}[yz],d_{t}[zx],d_{t}[xy] >



Principio:

E_{e}(x,y,z) = qk·(1/r)^{3}·< x,y,z >

B_{e}(d_{t}[x],d_{t}[y],d_{t}[z]) = (-1)·qk·(1/r)^{3}·< d_{t}[x],d_{t}[y],d_{t}[z] >

Principio:

E_{e}(yz,zx,xy) = qk·(1/r)^{4}·< yz,zx,xy >

B_{e}(d_{t}[yz],d_{t}[zx],d_{t}[xy]) = (-1)·qk·(1/r)^{4}·< d_{t}[yz],d_{t}[zx],d_{t}[xy] >



Teorema:

div[ F(x,y,z) ] = d_{xyz}^{3}[ Anti-Potencial[ F(x,y,z) ] ]

Anti-Potencial[ F(x,y,z) ] = int-int-int[ div[ F(x,y,z) ] ]d[x]d[y]d[z]

Teorema:

Anti-div[ F(yz,zx,xy) ] = d_{xyz}^{3}[ Potencial[ F(yz,zx,xy) ] ]

Potencial[ F(yz,zx,xy) ] = int-int-int[ Anti-div[ F(yz,zx,xy) ] ]d[x]d[y]d[z]



Ley:

div[ E_{g}(x,y,z) ] = (-3)·qk·(1/r)^{3}

Anti-Potencial[ E_{g}(x,y,z) ] = (-3)·qk·(1/r)^{3}·xyz

Ley:

div[ int[ B_{g}(d_{t}[x],d_{t}[y],d_{t}[z]) ]d[t] ] = 3qk·(1/r)^{3}

Anti-Potencial[ int[ B_{g}(d_{t}[x],d_{t}[y],d_{t}[z]) ]d[t] ] = 3qk·(1/r)^{3}·xyz



Ley:

Anti-div[ E_{g}(yz,zx,xy) ] = (-3)·qk·(1/r)^{4}

Potencial[ E_{g}(yz,zx,xy) ] = (-3)·qk·(1/r)^{4}·xyz

Ley:

Anti-div[ int[ B_{g}(d_{t}[yz],d_{t}[zx],d_{t}[xy]) ]d[t] ] = 3qk·(1/r)^{4}

Potencial[ int[ B_{g}(d_{t}[yz],d_{t}[zx],d_{t}[xy]) ]d[t] ] = 3qk·(1/r)^{4}·xyz



Ley:

div[ E_{e}(x,y,z) ] = 3qk·(1/r)^{3}

Anti-Potencial[ E_{e}(x,y,z) ] = 3qk·(1/r)^{3}·xyz

Ley:

div[ int[ B_{e}(d_{t}[x],d_{t}[y],d_{t}[z]) ]d[t] ] = (-3)·qk·(1/r)^{3}

Anti-Potencial[ int[ B_{e}(d_{t}[x],d_{t}[y],d_{t}[z]) ]d[t] ] = (-3)·qk·(1/r)^{3}·xyz



Ley:

Anti-div[ E_{e}(yz,zx,xy) ] = 3qk·(1/r)^{4}

Potencial[ E_{e}(yz,zx,xy) ] = 3qk·(1/r)^{4}·xyz

Ley:

Anti-div[ int[ B_{e}(d_{t}[yz],d_{t}[zx],d_{t}[xy]) ]d[t] ] = (-3)·qk·(1/r)^{4}

Potencial[ int[ B_{e}(d_{t}[yz],d_{t}[zx],d_{t}[xy]) ]d[t] ] = (-3)·qk·(1/r)^{4}·xyz



Ley:

m·d_{tt}^{2}[ < x,y,z > ] = p·( E_{e}(x,y,z)+int[ B_{e}(d_{t}[x],d_{t}[y],d_{t}[z]) ]d[t] )

m·d_{tt}^{2}[ < x,y,z > ] = p·( int[ B_{g}(d_{t}[x],d_{t}[y],d_{t}[z]) ]d[t]+E_{g}(x,y,z) )

x(t) = ct·cos(u)·cos(v)

y(t) = ct·sin(u)·cos(v)

z(t) = ct·sin(v)

Ley:

Lap[ E_{e}(x,y,z) ]+(1/c)^{2} [o] 3·d_{tt}^{2}[ int[ B_{e}(d_{t}[x],d_{t}[y],d_{t}[z]) ]d[t] ] = 0

Lap[ int[ B_{g}(d_{t}[x],d_{t}[y],d_{t}[z]) ]d[t] ]+(1/c)^{2} [o] 3·d_{tt}^{2}[ E_{g}(x,y,z) ] = 0



Definición:

Trans[f(x)]-(p) = int[x = 0]-[oo][ f(x)·e^{(-p)·x} ]d[x]

Teorema:

Trans[f(x)+g(x)]-(p) = Trans[f(x)]-(p)+Trans[g(x)]-(p)

Trans[w·f(x)]-(p) = w·Trans[f(x)]-(p)



Teorema:

Trans[cos(x)]-(p) = ( p/(p^{2}+1) )

Trans[sin(x)]-(p) = ( 1/(p^{2}+1) )

Demostración:

(-1)·(1/p)·int[x = 0]-[oo][ cos(x)·(-p)·e^{(-p)·x} ]d[x] = ...

... [x = 0]-[oo]-[ (-1)·(1/p)·cos(x)·e^{(-p)·x} ]+...

.... (-1)·(1/p)·int[x = 0]-[oo][ sin(x)·e^{(-p)·x} ]d[x]

(1/p)^{2}·int[x = 0]-[oo][ sin(x)·(-p)·e^{(-p)·x} ]d[x] = ...

.... [x = 0]-[oo]-[ (1/p)^{2}·sin(x)·e^{(-p)·x} ]+...

... (-1)·(1/p)^{2}·int[x = 0]-[oo][ cos(x)·e^{(-p)·x} ]d[x]

(p^{2}+1)·(1/p)^{2}·int[x = 0]-[oo][ cos(x)·e^{(-p)·x} ]d[x] = (1/p)

(-1)·(1/p)·int[x = 0]-[oo][ sin(x)·(-p)·e^{(-p)·x} ]d[x] = ...

... [x = 0]-[oo]-[ (-1)·(1/p)·sin(x)·e^{(-p)·x} ]+...

.... (1/p)·int[x = 0]-[oo][ cos(x)·e^{(-p)·x} ]d[x]

(-1)·(1/p)^{2}·int[x = 0]-[oo][ cos(x)·(-p)·e^{(-p)·x} ]d[x] = ...

.... [x = 0]-[oo]-[ (-1)·(1/p)^{2}·cos(x)·e^{(-p)·x} ]+...

... (-1)·(1/p)^{2}·int[x = 0]-[oo][ sin(x)·e^{(-p)·x} ]d[x]

(p^{2}+1)·(1/p)^{2}·int[x = 0]-[oo][ sin(x)·e^{(-p)·x} ]d[x] = (1/p)^{2}

Teorema:

Trans[cos(x)]-(p) + Trans[i·sin(x)]-(p) = Trans[e^{ix}]-(p)

Teorema:

Trans[cosh(x)]-(p) = ( p/(p^{2}+(-1)) )

Trans[sinh(x)]-(p) = ( 1/(p^{2}+(-1)) )

Teorema:

Trans[cosh(x)]-(p) + Trans[sinh(x)]-(p) = Trans[e^{x}]-(p)



Teorema:

Trans[( cos(x) )^{2}]-(p) = (-1)·(1/p)

Trans[( sin(x) )^{2}]-(p) = 2·(1/p)

Demostración:

( sin(x)+(-1)^{(1/2)} )^{[o(x)o] 2} [o(x)o] (-1)·(1/p)·e^{(-p)·x}

2·(-1)·cos(x) [o(x)o] sin(x) [o(x)o] (-1)·(1/p)·e^{(-p)·x} = 2·sin(x) [o(x)o] (-1)·(1/p)·e^{(-p)·x}

Teorema:

Trans[( cos(x) )^{2}]-(p) + Trans[( sin(x) )^{2}]-(p) = Trans[1]-(p)

Teorema:

Trans[( cosh(x) )^{2}]-(p) = 2·(1/p)

Trans[( sinh(x) )^{2}]-(p) = (1/p)

Demostración:

2·( sinh(x) ) [o(x)o] cosh(x) [o(x)o] (-1)·(1/p)·e^{(-p)·x} = 2·sinh(x) [o(x)o] (-1)·(1/p)·e^{(-p)·x}

( 1^{(1/2)}+cosh(x)+(-1) )^{[o(x)o] 2} [o(x)o] (-1)·(1/p)·e^{(-p)·x}

Teorema:

Trans[( cosh(x) )^{2}]-(p) + (-1)·Trans[( sinh(x) )^{2}]-(p) = Trans[1]-(p)



Teorema:

Trans[( cos[n](x) )^{n+1}]-(p) = n^{n+1}·( 1+(-1)·(n+1)! )·(1/p)

Trans[( sin[n](x) )^{n+1}]-(p) = (n+1)!·n^{n+1}·(1/p)

Demostración:

( sin[n](x)+n·( 1+(-1)·(n+1)! )^{( 1/(n+1) )} )^{[o(x)o] (n+1)} [o(x)o] (-1)·(1/p)·e^{(-p)·x}

(n+1)!·(-1)·cos[n](x) [o(x)o] n^{n}·(-1)·(1/p)·e^{(-p)·x} = (n+1)!·n^{n+1}·(-1)·(1/p)·e^{(-p)·x}

Teorema:

Trans[( cos[n](x) )^{n+1}]-(p) + Trans[( sin[n](x) )^{n+1}]-(p) = Trans[n^{n+1}]-(p)

Teorema:

Trans[( cosh[n](x) )^{n+1}]-(p) = (n+1)!·n^{n+1}·(1/p)

Trans[( sinh[n](x) )^{n+1}]-(p) = ((n+1)!+(-1))·n^{n+1}·(1/p)

Demostración:

(n+1)!·( sinh[n](x) ) [o(x)o] n^{n}·(-1)·(1/p)·e^{(-p)·x} = (n+1)!·n^{n+1} (-1)·(1/p)·e^{(-p)·x}

( ((n+1)!+(-1))^{( 1/(n+1) )}·n+cosh[n](x)+(-n) )^{[o(x)o] (n+1)} [o(x)o] (-1)·(1/p)·e^{(-p)·x}

Teorema:

Trans[( cosh[n](x) )^{n+1}]-(p) + (-1)·Trans[( sinh[n](x) )^{n+1}]-(p) = Trans[n^{n+1}]-(p)



Teorema:

Si f(0) = 0 ==> Trans[ d_{x}[f(x)] ]-(p) = p·Trans[f(x)]-(p)

Demostración:

Trans[f(x)]-(p) = [x = 0]-[oo][ (-1)·(1/p)·f(x)·e^{(-p)·x} ]+(1/p)·Trans[ d_{x}[f(x)] ]-(p)

Teorema:

Trans[ 1+(-1)·cos(x) ]-(p) = (1/p)·Trans[ sin(x) ]-(p) = (1/p)·( 1/(p^{2}+1) )

Trans[ 1+(-1)·cos(x) ]-(p) = (1/p)+(-1)·( p/(p^{2}+1) ) = (1/p)·( 1/(p^{2}+1))

Trans[ 1+(-1)·cosh(x) ]-(p) = (1/p)·Trans[(-1)·sinh(x)]-(p) = (1/p)·(-1)·( 1/(p^{2}+(-1)) )

Trans[ 1+(-1)·cosh(x) ]-(p) = (1/p)+(-1)·( p/(p^{2}+(-1)) ) = (1/p)·(-1)·( 1/(p^{2}+(-1)) )



Teorema:

Trans[e^{ax}]-(p) = ( 1/(p+(-a)) )

Teorema:

Trans[ ( e^{x}+(-1) )^{2} ]-(p) = (2/p)·( ( 1/(p+(-2)) )+(-1)·( 1/(p+(-1)) ) = ...

... (2/p)·( 1/( (p+(-2))·(p+(-1)) ) )

Trans[ e^{2x}+(-2)·e^{x}+1 ]-(p) = ( 1/(p+(-2)) )+(-1)·( 2/(p+(-1)) )+(1/p) = ...

... ( 1/(p+(-2)) )+(-1)·( (p+1)/(p^{2}+(-p)) ) = (2/p)·( 1/( (p+(-2))·(p+(-1)) ) )

Teorema:

Trans[ e^{x}+(-1) ]-(p) = ( 1/(p+(-1)) )+(-1)·(1/p) = (1/p)·( 1/(p+(-1)) ) = (1/p)·Trans[e^{x}]-(p)



Teorema:

Trans[x^{n}]-(p) = n!·(1/p)^{n+1}

Demostración:

Trans[x^{n+1}]-(p) = (1/p)·Trans[(n+1)·x^{n}]-(p) = (1/p)·(n+1)·n!·(1/p)^{n+1} = (n+1)!·(1/p)^{n+2}

Teorema:

Trans[(1/x)^{n}]-(p) = (1/n!)·(1/p)^{n+1}

Demostración:

[ Trans[ ( x /o(x)o/ x^{n+1} ) ]-(p) = Trans[ ( 1/(n+1)! )·x ]-(p) ] = ...

... (1/p)·( 1/(n+1) )·[ Trans[ ( x /o(x)o/ x^{n} ) ]-(p) = Trans[ (1/n!)·x ]-(p) ] = ...

... (1/p)·( 1/(n+1) )·(1/n!)·(1/p)^{n+1} = ( 1/(n+1)! )·(1/p)^{n+2}

Teorema:

Trans[ax+b]-(p) = a·(1/p)^{2}+b·(1/p)

Trans[ax^{2}+bx+c]-(p) = 2a·(1/p)^{3}+b·(1/p)^{2}+c·(1/p)

Teorema:

Trans[a·(1/x)+b]-(p) = a·(1/p)^{2}+b·(1/p)

Trans[a·(1/x)^{2}+b·(1/x)+c]-(p) = (1/2)·a·(1/p)^{3}+b·(1/p)^{2}+c·(1/p)



Teorema:

Trans[ sin(x)·cos(x) ]-(p) = 1

Trans[ sinh(x)·cosh(x) ]-(p) = (1/2)

Teorema:

Trans[ ( 1+(-1)·cos(x) )^{2} ]-(p) = (2/p)·( ( 1/(p^{2}+1) )+(-1) ) = (-1)·( (2p)/(p^{2}+1) )

Trans[ 1+(-2)·cos(x)+( cos(x) )^{2} ]-(p) = (1/p)+(-1)·( (2p)/(p^{2}+1) )+(-1)·(1/p)

Teorema:

Trans[ ( 1+(-1)·cosh(x) )^{2} ]-(p) = (2/p)·( (-1)·( 1/(p^{2}+(-1)) )+(1/2) ) = ...

... (1/p)·( (p^{2}+(-3))/(p^{2}+(-1)) )

Trans[ 1+(-2)·cosh(x)+( cosh(x) )^{2} ]-(p) = (1/p)+(-1)·( (2p)/(p^{2}+(-1)) )+2·(1/p) = ...

...(1/p)·( (p^{2}+(-3))/(p^{2}+(-1)) )



Teorema:

( g o f ): ...

... [ {a_{1},...,a_{n}} ] ---> ...

... [ {f(a_{1}),...,f(a_{n})} ] ---> ...

... [ {(g o f)(a_{1}),...,(g o f)(a_{n})} ]

S[ {a_{1},...,a_{n}} ]-(x) = sum[k = 1]-[n][ x^{k} ]

Teorema:

( g o f ): ...

... [ {a_{1}},...,{a_{n}} ] ---> ...

... [ {f(a_{1})},...,{f(a_{n})} ] ---> ...

... [ {(g o f)(a_{1})},...,{(g o f)(a_{n})} ]

S[ {a_{1}},...,{a_{n}} ]-(x) = sum[k = 1]-[n][ kx^{k} ]

Teorema

d_{x}[ S[ {a_{1},..,a_{n}} ]-(1) ] = (1/2)·n·(n+3)

Demostración:

d_{x}[ sum[k = 1]-[n][ x^{k}] ] = sum[k = 1]-[n][ kx^{k+(-1)} ] = ...

... sum[k = 1]-[n][ (k+1)·x^{k} ] = sum[k = 1]-[n][ kx^{k} ]+sum[k = 1]-[n][ x^{k} ]

... sum[k = 1]-[n][ k ]+sum[k = 1]-[n][1] = (1/2)·n·(n+1)+n = (1/2)·n·(n+1)+(1/2)·n·2 = (1/2)·n·(n+3)

Teorema:

( g o f ): ...

... [ P( {a_{1},...,a_{n}} ) ] ---> ...

... [ P( {f(a_{1}),...,f(a_{n})} ) ] ---> ...

... [ P( {(g o f)(a_{1}),...,(g o f)(a_{n})} ) ]

S[ P( {a_{1},..,a_{n}} ) ]-(x) = 1+sum[k = 1]-[n][ [ n // k ]·x^{k} ] = (1+x)^{n}

Teorema

d_{x}[ S[ P( {a_{1},..,a_{n}} ) ]-(1) ] = n·2^{n+(-1)}

Demostración:

d_{x}[ 1+sum[k = 1]-[n][ [ n // k ]·x^{k} ] ] = n·sum[k = 1]-[n][ [ n+(-1) // k+(-1) ]·x^{k+(-1)} ] ...

... n·sum[k = 1]-[n][ [ n+(-1) // k+(-1) ] ] = n·2^{n+(-1)}

Teorema:

( g o f ): ...

... [ < m_{1},...,m_{n} > ] ---> ...

... [ < f(m_{1}),...,f(m_{n}) > ] ---> ...

... [ < (g o f)(m_{1}),...,(g o f)(m_{n}) > ) ]

S[ < m_{1},...,m_{n} > ]-(x) = sum[k = 1]-[n][ k!·x^{k} ]

Teorema

d_{x}[ S[ < m_{1},...,m_{n} > ]-(1) ] = (n+2)!+(-2)

Demostración:

d_{x}[ sum[k = 1]-[n][ k!·x^{k} ] ] = sum[k = 1]-[n][ k·k!·x^{k+(-1)} ] = ...

... sum[k = 1]-[n][ (k+1)·(k+1)!·x^{k} ] 

... sum[k = 1]-[n][ (k+1)·(k+1)! ] = (n+2)!+(-2)

Teorema:

( g o f ): ...

... [ { mk,...,mk+(m+(-1)) } ] ---> ...

... [ { f(mk),...,f(mk+(m+(-1))) } ] ---> ...

... [ { (g o f)(mk),...,(g o f)(mk+(m+(-1))) } ) ]

S[ { mk,...,mk+(m+(-1)) } ]-(x) = sum[k = 1]-[n][ [ n // k & j_{1} & ... & j_{m+(-1)} ]·x^{k} ]

Teorema

d_{x}[ S[ { mk,...,mk+(m+(-1)) } ]-(1) ] = n·m^{n+(-1)}

Demostración:

d_{x}[ sum[k = 1]-[n][ [ n // k & j_{1} & ... & j_{m+(-1)} ]·x^{k} ] ] = ...

... n·sum[k = 1]-[n][ [ n+(-1) // k+(-1) & j_{1}+(-1) & ... & j_{m+(-1)}+(-1) ]·x^{k+(-1)} ] = ...

... n·sum[k = 1]-[n][ [ n+(-1) // k+(-1) & j_{1}+(-1) & ... & j_{m+(-1)}+(-1) ] ] = n·m^{n+(-1)}



Lema: [ de los rollos de papel ]

F(r) = 2pi·r+(-h)·pi·r^{2}

h = (1/r)

G(r) = pi·r

Lema: [ de las bolas ]

F(r) = 4pi·r^{2}+(-h)·(4/3)·pi·r^{3}

h = (2/r)

G(r) = (4/3)·pi·r^{2}



Lema: [ del loche ]

F(x,y,z) = 4z+xy+2yz+(-h)·(xyz+(-1)·abc)

h = ( 1/(3abc) )·(4c+2ab+4bc)

Lema: [ del sofá ]

F(x,y,z) = 4z+xy+2yz+zx+(-h)·(xyz+(-1)·abc)

h = ( 1/(3abc) )·(4c+2ab+4bc+2ca)



Lema: [ de la tabla ]

F(x,y,z) = 4z+yx+(-h)·(xyz+(-1)·abc)

h = ( 1/(3abc) )·(4c+2ba)

Lema: [ de la silla ]

F(x,y,z) = 4z+yx+xz+(-h)·(xyz+(-1)·abc)

h = ( 1/(3abc) )·(4c+2ba+2ac)



Ley:

Los matemáticos,

emitimos energía,

pero no sabemos conducir,

y no detectamos ninguna máquina.

Los no matemáticos,

no emiten energía,

pero saben conducir,

y detectan alguna máquina.

Ley:

Los matemáticos,

somos señores,

siendo jueces o generales,

porque emitimos constructor o destructor,

y no puede ninguien parar-nos.

Los no matemáticos,

no son señores,

no siendo jueces ni generales,

porque no emiten constructor ni destructor,

y puede alguien parar-los.

Anexo:

Los matemáticos son señores por el Rey de España:

es juez siendo árbitro de la democracia.

es general siendo comandante en jefe.

Ley:

Que la gente no es,

lo dicen los señores de los hombres.

Que la gente es,

lo dicen los no señores de los hombres.



Ley:

Como te vas a creer a un infiel,

no matemático,

de que soy homosexual,

él sabiendo conducir,

y no ser un señor.

Como no te vas a creer a un fiel,

matemático,

de que soy heterosexual,

él no sabiendo conducir,

y ser un señor.



Teorema:

Trans[sin(ax)]-(p) = ( a/(p^{2}+a^{2}) )

Trans[cos(ax)]-(p) = ( p/(p^{2}+a^{2}) )

Demostración:

sin(ax) = (1/2i)·( e^{aix}+(-1)·e^{(-a)·ix} )

Trans[sin(ax)]-(p) = (1/2i)·( ( 1/(p+(-a)·i) )+(-1)·( 1/(p+ai) ) )

Teorema:

Trans[e^{(-c)·x}·f(x)]-(p) = Trans[f(x)]-(p+c)

Teorema:

Trans[f(x)]-(p) = ( 1/(p^{2}+8p+41) ) <==> f(x) = (1/5)·e^{(-4)·x}·sin(5x)

Trans[ d_{x}[f(x)] ]-(p) = ( p/(p^{2}+8p+41) ) <==> ...

... d_{x}[f(x)] = e^{(-4)·x}·( cos(5x)+(-1)·(4/5)·sin(5x) )

Teorema:

Trans[f(x)]-(p) = ( 1/(p^{2}+4p+13) ) <==> f(x) = (1/3)·e^{(-2)·x}·sin(3x)

Trans[ d_{x}[f(x)] ]-(p) = ( p/(p^{2}+4p+13) ) <==> ...

... d_{x}[f(x)] = e^{(-2)·x}·( cos(3x)+(-1)·(2/3)·sin(3x) )

Teorema:

Trans[f(x)]-(p) = ( 1/(p+a) ) <==> f(x) = e^{(-a)·x}·( sinh(x) )^{2}

Trans[ d_{x}[f(x)] ]-(p) = ( p/(p+a) ) <==> ...

... d_{x}[f(x)]  = e^{(-a)·x}·( 2·sinh(x)·cosh(x)+(-a)·( sinh(x) )^{2} )

Demostración:

Trans[e^{(-a)·x}·2·sinh(x)·cosh(x)]-(p) = (p+a)^{0} = 1

Teorema:

Trans[f(x)]-(p) = ( p^{2}/(p^{2}+(a+b)·p+ab) ) = ...

... ( (ab)/(a+(-b)) )·( (1/b)·( p/(p+a) )+(-1)·(1/a)·( p/(p+b) ) ) <==> ...

... f(x) = ( (ab)/(a+(-b)) )·( ...

... (1/b)·e^{(-a)·x}·( 2·sinh(x)·cosh(x)+(-a)·( sinh(x) )^{2} )+...

... (-1)·(1/a)·e^{(-b)·x}·( 2·sinh(x)·cosh(x)+(-b)·( sinh(x) )^{2} ) )

Teorema:

Trans[f(x)]-(p) = ( p^{2}/(p^{2}+3p+2) ) = 2·( ( p/(p+2) )+(-1)·(1/2)·( p/(p+1) ) ) <==> ...

... f(x) = 2e^{(-2)·x}·( 2·sinh(x)·cosh(x)+(-2)·( sinh(x) )^{2} )+...

... (-1)·e^{(-1)·x}·( 2·sinh(x)·cosh(x)+(-1)·( sinh(x) )^{2} )

Teorema:

Trans[f(x)]-(p) = ( 1/(p+a)^{n+1} ) <==> f(x) = e^{(-a)·x}·(1/n!)·x^{n}

Trans[ d_{x}[f(x)] ]-(p) = ( p/(p+a)^{n+1} ) = (-a)·( 1/(p+a)^{n+1} )+( 1/(p+a)^{n} ) <==> ...

... d_{x}[f(x)] = (-a)·e^{(-a)·x}·(1/n!)·x^{n}+e^{(-a)·x}·( 1/(n+(-1))! )·x^{n+(-1)}

Teorema:

Trans[f(x)]-(p) = ( 1/(p+a)^{2} ) <==>f(x) = e^{(-a)·x}·x

Trans[ d_{x}[f(x)] ]-(p) = ( p/(p+a)^{2} ) = (-a)·( 1/(p+a)^{2} )+( 1/(p+a) ) <==> ...

... d_{x}[f(x)] = (-a)·e^{(-a)·x}·x+e^{(-a)·x}



Lema:

Sea n >] 1 ==>

( y(x) )^{n}·d_{x}[y(x)] = 1 >] x >] 0

y(x) = ( (n+1)·x )^{( 1/(n+1) )}

w(x) = ( y(x) )^{n+1}

Socialismo:

1 >] ( 2/(n+1) ) >] 0

w( 2/(n+1) ) = 2€

Social-Democracia:

1 >] ( 1/(n+1) ) >] 0

w( 1/(n+1) ) = 1€

Lema:

Sea n >] 1 ==>

e^{(n+1)·y(x)}·d_{x}[y(x)] = 1 >] x >] 0

y(x) = ( 1/(n+1) )·ln( (n+1)·x )

w(x) = e^{(n+1)·y(x)}

Socialismo:

1 >] ( 2/(n+1) ) >] 0

w( 2/(n+1) ) = 2€

Social-Democracia:

1 >] ( 1/(n+1) ) >] 0

w( 1/(n+1) ) = 1€



Teorema: [ de área de un sector circular ]

A(r) = (1/2)·wr^{2}

int[x = 0]-[r][y = 0]-[r][ pi ]d[x]d[y] = pi·r^{2}

4·int[s = (-1)·(pi/4)]-[(pi/4)][ (1/2)·pi·r·cos(2s) ]d[r]d[s] = pi·r^{2}

Teorema: [ de superficie de un sector esférico ]

S(r) = 2wr^{2}

int[x = 0]-[r][y = 0]-[r][ 4pi ]d[x]d[y] = 4pi·r^{2}

4·int[s = (-1)·(pi/4)]-[(pi/4)][ (1/2)·4pi·r·cos(2s) ]d[r]d[s] = 4pi·r^{2}



Ley:

No se puede creer que un infiel es un señor.

El esclavo no es mayor que su señor,

ni el enviado mayor que el que lo envía.

Ley:

No se puede poner un infiel por encima de un fiel.

El esclavo no es mayor que el enviado.

Ley:

No se puede joder a un fiel que estudia.

El señor no es mayor que el que lo envía.

Ley:

No se puede aplicar sexo estudiando,

porque el esclavo no es mayor que el que te envía.

No se puede aplicar violencia estudiando,

porque el esclavo no es mayor que el que te envía.

Anexo:

Han rezado pinchar-me con Xeplion y Risperidona,

haciende el esclavo mayor que el que lo envía porque estudio.

No hay comentarios:

Publicar un comentario