lunes, 20 de mayo de 2024

física-mecánica-I y matemáticas-anti-funciones y gravito-electro-magnetismo y física-singularidades-inflación y teoría-de-cuerdas

Ley:

Sea d[r]d[r] = d[x]d[x]+d[y]d[y] ==>

m·d_{tt}^{2}[x] = F·sin(ut)

m·d_{tt}^{2}[y] = F·cos(ut)

d_{t}[x] = (F/m)·(1/u)·( 1+(-1)·cos(ut) )

d_{t}[y] = (F/m)·(1/u)·sin(ut)

d_{t}[r] = 2·(F/m)·(1/u)·sin((ut)/2)

r( (2pi)/u )+(-1)·r(0) = 8·(F/m)·(1/u)^{2}

Ley:

Sea d[r]d[r] = d[x]d[x]+(-1)·d[y]d[y] ==>

m·d_{tt}^{2}[x] = F·sinh(ut)

m·d_{tt}^{2}[y] = F·cosh(ut)

d_{t}[x] = (F/m)·(1/u)·( cosh(ut)+(-1) )

d_{t}[y] = (F/m)·(1/u)·sinh(ut)

d_{t}[r] = 2i·(F/m)·(1/u)·sinh((ut)/2)

r( (2pi·i)/u )+(-1)·r(0) = (-8)·i·(F/m)·(1/u)^{2}




Definición: [ de recta de interpolación de LaGrange de dos puntos ]

H(x) = ( ( x+(-1)·x_{i})/(x_{j}+(-1)·x_{i}) )·f(x_{j})+( ( x+(-1)·x_{j})/(x_{i}+(-1)·x_{j}) )·f(x_{i})

Teorema:

H(x) = 1 <==> f(x_{i}) = f(x_{j})

Definición: [ de curva de interpolación de LaGrange de dos puntos ]

H(x) = ( x/x_{j} )^{n}·( ( x+(-1)·x_{i})/(x_{j}+(-1)·x_{i}) )·f(x_{j})+...

... ( x/x_{i} )^{n}·( ( x+(-1)·x_{j})/(x_{i}+(-1)·x_{j}) )·f(x_{i})



Definición:

Sea N(s,t) = Anti-[ int[ ( 1/f(s) ) ]d[s] ]-(at) ==>

d_{t}[ Anti-[ int[ ( 1/f(s) ) ]d[s] ]-(at) ] = f( N(s,t) )·a

Definición:

Sea P(u,t) = Anti-[ int-int[ ( 1/(f(u)·g(v)) ) ]d[u]d[v] ]-(at) ==>

Sea Q(v,t) = Anti-[ int-int[ ( 1/(f(v)·g(u)) ) ]d[v]d[u] ]-(at) ==>

d_{t}[ Anti-[ int-int[ ( 1/(f(u)·g(v)) ) ]d[u]d[v] ]-(at) ] = f( P(u,t) )·g( Q(v,t) )·a

d_{t}[ Anti-[ int-int[ ( 1/(f(v)·g(u)) ) ]d[v]d[u] ]-(at) ] = f( Q(v,t) )·g( P(u,t) )·a



Principio:

d[W_{g}(x)] = k·(1/r)·d_{x}[q(x)]·d[x]

d[W_{e}(x)] = (-1)·k·(1/r)·d_{x}[q(x)]·d[x]

Ley:

Sea d_{x}[q(x)] = qa·( e^{ax}+n ) ==>

W_{g}(x) = qk·(1/r)·( e^{ax}+nax )

W_{e}(x) = (-1)·qk·(1/r)·( e^{ax}+nax )

(m/2)·d_{t}[x]^{2} = p·W_{g}(x)

x(t) = ...

... (1/a)·Anti-[ ( s /o(s)o/ ( e^{s}+(n/2)·s^{2} ) )^{[o(s)o] (1/2)} ]-( ( (2/m)·(pq)·k·(1/r) )^{(1/2)}·at )

Anexo:

d_{t}[s(t)] = ( x(s) )^{(1/2)}·( (2/m)·E )^{(1/2)}

d_{tt}^{2}[ s(t) ] = (1/2)·( x(s) )^{(-1)·(1/2)}·d_{s}[x(s)]·d_{t}[s(t)]·( (2/m)·E )^{(1/2)}·a

Examen de gravito-electro-magnetismo:

Ley:

Sea d_{x}[q(x)] = q·( (1/x)+na ) ==>

W_{g}(x) = ?

W_{e}(x) = ?

(m/2)·d_{t}[x]^{2} = p·W_{g}(x)

x(t) = ?



Principio:

d[ d[W_{g}(x,y)] ] = k·(1/r)·d_{xy}^{2}[q(x,y)]·d[x]d[y]

d[ d[W_{e}(x,y)] ] = (-1)·k·(1/r)·d_{xy}^{2}[q(x,y)]·d[x]d[y]

Ley:

Sea d_{xy}^{2}[q(x,y)] = qab·( e^{ax}+e^{by} ) ==>

W_{g}(x,y) = qk·(1/r)·( bye^{ax}+axe^{by} )

W_{e}(x,y) = (-1)·qk·(1/r)·( bye^{ax}+axe^{by} )

(m/2)·( d_{t}[x]^{2}+d_{t}[y]^{2} ) = p·W_{g}(x,y)

x(t) = ...

... (1/a)·Anti-[ ( ( u || v ) /o(u || v)o/ (1/2)·v^{2}·e^{u} )^{[o(u || v)o] (1/2)} ]-( ...

... ( (2/m)·(pq)·k·(1/r) )^{(1/2)}·at ...

... )

y(t) = ...

... (1/b)·Anti-[ ( ( v || u ) /o(v || u)o/ (1/2)·u^{2}·e^{v} )^{[o(v || u)o] (1/2)} ]-( ...

... ( (2/m)·(pq)·k·(1/r) )^{(1/2)}·bt ...

... )

Ley:

Sea d_{xy}^{2}[q(x,y)] = q·( a·(1/y)+b·(1/x) )

W_{g}(x,y) = qk·(1/r)·( ax·ln(by)+by·ln(ax) )

W_{e}(x,y) = (-1)·qk·(1/r)·( ax·ln(by)+by·ln(ax) )

(m/2)·( d_{t}[x]^{2}+d_{t}[y]^{2} ) = p·W_{g}(x,y)

x(t) = ...

... (1/a)·Anti-[ ( ( u || v ) /o(u || v)o/ (1/2)·u^{2}·( ln(v)·v+(-v) ) )^{[o(u || v)o] (1/2)} ]-( ...

... ( (2/m)·(pq)·k·(1/r) )^{(1/2)}·at ...

... )

y(t) = ...

... (1/b)·Anti-[ ( ( v || u ) /o(v || u)o/ (1/2)·v^{2}·( ln(u)·u+(-u) ) )^{[o(v || u)o] (1/2)} ]-( ...

... ( (2/m)·(pq)·k·(1/r) )^{(1/2)}·bt ...

... )

Ley:

Sea d_{xy}^{2}[q(x,y)] = qab·( e^{ax}+e^{by}+n )

W_{g}(x,y) = qk·(1/r)·( bye^{ax}+axe^{by}+naxby )

W_{e}(x,y) = (-1)·qk·(1/r)·( bye^{ax}+axe^{by}+naxby )

(m/2)·( d_{t}[x]^{2}+d_{t}[y]^{2} ) = p·W_{g}(x,y)

x(t) = ...

... (1/a)·Anti-[ ( ( u || v ) /o(u || v)o/ (1/2)·v^{2}·e^{u}+(n/8)·(uv)^{2} )^{[o(u || v)o] (1/2)} ]-( ...

... ( (2/m)·(pq)·k·(1/r) )^{(1/2)}·at ...

... )

y(t) = ...

... (1/b)·Anti-[ ( ( v || u ) /o(v || u)o/ (1/2)·u^{2}·e^{v}+(n/8)·(vu)^{2} )^{[o(v || u)o] (1/2)} ]-( ...

... ( (2/m)·(pq)·k·(1/r) )^{(1/2)}·bt ...

... )

Examen de gravito-electro-magnetismo:

Ley:

Sea d_{xy}^{2}[q(x,y)] = q·( b·(1/x)+a·(1/y)+nab ) ==>

W_{g}(x,y) = ?

W_{e}(x,y) = ?

(m/2)·( d_{t}[x]^{2}+d_{t}[y]^{2} ) = p·W_{g}(x)

x(t) = ?

y(t) = ?



Principio:

Los fieles:

están para amar-los.

Los infieles:

están para odiar-los.

Ley:

Si vos sienta bien una digestión:

Vos cagaréis encima estéis donde estéis,

si rezáis que se cague encima un fiel,

porque no tenéis energía de aguante de cagar-se.

Si vos sienta mal una digestión:

No vos cagaréis encima estéis donde estéis,

si rezáis que se cague encima un infiel,

porque tenéis energía de aguante de cagar-se.

Ley:

Cagando poco,

y con poco papel,

se emboza el váter,

rezando embozar el váter a un fiel.

Cagando mucho,

y con mucho papel,

no se emboza el váter,

rezando embozar el váter a un infiel.

Ley:

Si dices homosexual a un fiel,

no se pone caliente ninguien contigo.

Si dices homosexual a un infiel,

se pone caliente alguien contigo.



Mecánica de singularidades-y-inflación:

Principio:

[An][EA][ P(n) = (n+1) [ || ] A ]

[An][EA][ ¬P(not(n)) = not(n+1) [&] ¬A ]

Ley:

(n+1) [<< P(n)

Deducción:

(n+1) = {0,...,n} = n [ || ] {n} [<< P(n+(1)) [ || ] {n} [<< P(n) [ || ] {n} [<< P(n) [ || ] P(n) = P(n)

Ley:

not(n+1) >>] ¬P(not(n))

Deducción:

not(n+1) = }not(0),...,not(n){ = not(n) [&] }n{ >>] ¬P( not(n+(1)) ) [&] }not(n){ >>] ...

... ¬P(not(n)) [&] }not(n){ >>] ¬P(not(n)) [&] ¬P(not(n)) = ¬P(not(n))



Ley: [ del Big-Bang y del Big-Cruntch según la inflación ]

El vacío = 0

El espacio-tiempo vacío = not(0)

Big-Bang: 

0 [ || ] not(0) = not(0)

Big-Cruntch:

 not(0) [&] 0 = 0



Ley: [ de creación de materia positiva según la inflación ]

Vacío = 0

Primera burbuja:

fotón eléctrico <==> P(0) = {0} = 1

Segunda burbuja:

< W , electrón > <==> P(1) = {0,{0}} = 2

Tercera burbuja:

< quarks , protón > <==> ...

... P(2) = { 0,{0},{{0}},{0,{0}} } = 3 [ || ] {{{0}}}

Ley: [ de creación de materia negativa según la inflación ]

Espacio-tiempo vacío = not(0)

Primera burbuja negativa:

fotón gravitatorio <==> ¬P( not(0) ) = }not(0){

Segunda burbuja negativa: 

< Z , gravitón > <==> ¬P(not(1)) = }not(0),}not(0){{ = not(2)

Tercera burbuja negativa:

< quarks, neutrón > <==> ...

... ¬P(not(2)) = } not(0),}not(0){,}}not(0){{,}not(0),}not(0){{ { = not(3) [&] }}}not(0){{{ 



Ley: [ mecánica de inflación ]

Existencia:

n [ || ] not(n) = not(0)

Inexistencia:

not(n) [&] n = 0

Ley: [ mecánica de singularidades ]

Entrada a la singularidad:

protón [&] electrón = 0

neutrón [&] gravitón = 0

Salida de la singularidad:

protón [ || ] electrón = not(0)

neutrón [ || ] gravitón = not(0)



Ley:

[AB][ B es galaxia espiral ==> ...

... [EA][ A es una singularidad gris de fotones eléctricos y fotones gravitatorios ] ]

[AB][ B es galaxia esférica ==> ...

... [EA][ A es una singularidad gris de fotones eléctricos y fotones gravitatorios ] ]

Anexo:

Si se acelera el universo se va a morir pronto,

porque la energía del espacio-tiempo será mayor,

que la energía gris de las singularidades de las galaxias.

La singularidad de energía gris de la galaxia,

mantiene creada la materia en la galaxia.



Ley:

Sea f(u) = he^{iau} ==> ( S(u) )^{2} = (1/2)·h^{2}·e^{2iau}

Sea f(v) = he^{iav} ==> ( S(v) )^{2} = (1/2)·h^{2}·e^{2iav}

Ley:

int[ (pq)·k·( 1/S(u) )^{2} ]d[he^{iau}] = (-1)·2·(pq)·k·(1/h)·e^{(-1)·iau}

(m/2)·d_{t}[u(t)]^{2} = (-1)·2·(pq)·k·(1/h)·e^{(-1)·iau}

u(t) = 2·(1/i)·(1/a)·ln( ( (1/m)·(pq)·k·(1/h) )^{(1/2)}·at )

int[ (-1)·(pq)·k·( 1/S(v) )^{2} ]d[he^{iav}] = 2·(pq)·k·(1/h)·e^{(-1)·iav}

(m/2)·d_{t}[v(t)]^{2} = 2·(pq)·k·(1/h)·e^{(-1)·iav}

v(t) = 2·(1/i)·(1/a)·ln( ( (-1)·(1/m)·(pq)·k·(1/h) )^{(1/2)}·at )

Ley:

int[ (-1)·kb·( S(u) )^{2} ]d[he^{iau}] = (-1)·(1/6)·kb·h^{3}·e^{3iau}

u(t) = (-1)·(2/3)·(1/i)·(1/a)·ln( ( (3/4)·(1/m)·kb·h^{3} )^{(1/2)}·at )

int[ kb·( S(v) )^{2} ]d[he^{iav}] = (1/6)·kb·h^{3}·e^{3iav}

v(t) = (-1)·(2/3)·(1/i)·(1/a)·ln( ( (-1)·(3/4)·(1/m)·kb·h^{3} )^{(1/2)}·at )



Ley: [ de eternidad de la entidad ]

Hombre:

{i} [ || ] }j{ = A

}i{ [&] {j} = ¬A

Mujer:

{j} [ || ] }i{ = B

}j{ [&] {i} = ¬B



Ley:

Si d_{tt}^{2}[w(t)] = b·cos(w) ==> ...

... d_{t}[w(t)] = ( 2b·sin(w) )^{(1/2)}

... w(t) = Anti-[ ( (-1)·cos(s)+ln(sin(s)) [o(s)o] sin(s) )^{[o(s)o] (1/2)} ]-( (2b)^{(1/2)}·t )

Ley:

Si d_{tt}^{2}[w(t)] = b·(1/w) ==> ...

... d_{t}[w(t)] = ( 2b·ln(w) )^{(1/2)}

... w(t) = Anti-[ ( ln(ln(s)) [o(s)o] (1/2)·s^{2} )^{[o(s)o] (1/2)} ]-( (2b)^{(1/2)}·t )

Ley:

Si d_{tt}^{2}[w(t)] = b·w^{p}·e^{w} ==> ...

... d_{t}[w(t)] = ( 2b·w^{p+1}·er-h-[p+1](w) )^{(1/2)}

... w(t) = Anti-[ ( s /o(s)o/ s^{p+2}·er-h-[p+1]-[p+2](s) )^{[o(s)o] (1/2)} ]-( (2b)^{(1/2)}·t )



Teorema:

int[x = 0]-[oo][ e^{(-1)·x^{n}}·nx^{n} ]d[x] = n

Demostración:

lim[x = 0][ (-n)·e^{(-1)·x^{n}} [o(x)o] ( ( 1/(n+1) )·x^{n+1} /o(x)o/ x^{n} ) ] = (-n)

lim[x = 0][ (-n)·e^{(-1)·x^{n}} [o(x)o] ( n!·x /o(x)o/ n! ) ] = ...

... lim[x = 0][ (-n)·( e^{(-1)·x^{n}} /o(x)o/ 1 ) ] = (-n)

int[ ( 1/0 ) ]d[0] = int[ (1/0) ]d[0·1] = (0/0)·int[1]d[1] = 1

No hay comentarios:

Publicar un comentario