sábado, 29 de enero de 2022

mecánica clásica

l = longitud del hombre de pié.

somier:

m·d_{tt}^{2}[z(t)] = P·l·( x+y )

z(t) = A·e^{2^{(1/2)}·( (P·l)/m )^{(1/2)}·t}

colchón:

m·d_{tt}^{2}[z(t)] = (-1)·P·l·( x+y )

z(t) = A·e^{2^{(1/2)}·( (P·l)/m )^{(1/2)}·it}

váter:

m·d_{tt}^{2}[z(t)] = P·( x^{2}+y^{2} )

z(t) = ( (1/3)^{(1/2)}·(P/m)^{(1/2)}·t )^{(-2)}

ducha:

m·d_{tt}^{2}[z(t)] = (-P)·( x^{2}+y^{2} )

z(t) = ( (1/3)^{(1/2)}·(P/m)^{(1/2)}·it )^{(-2)}

sofá-derecho

m·d_{tt}^{2}[z(t)] = (P/l)·( x^{3}+y^{3} )

z(t) = ( ( P/(m·l) )^{(1/2)}·t )^{(-1)}

sofá-izquierdo

m·d_{tt}^{2}[z(t)] = (-1)·(P/l)·( x^{3}+y^{3} )

z(t) = ( ( P/(m·l) )^{(1/2)}·it )^{(-1)}


No desearás nada que le pertenezca al prójimo:

Si no sois del Gestalt,

no hagáis modus ponens de este blog,

que se convierte en destrocter ponens contra vosotros.

Desearás algo que le pertenezca al próximo:

Si sois del Gestalt,

haced modus ponens de este blog,

que no se convierte en destrocter ponens contra vosotros.


d_{x}[u(x,y)]+d_{y}[u(x,y)] = f(x)+g(y)

u(x,y) = int[ f(x) ]d[x]+int[ g(y) ]d[y]

d_{x}[u(x,y)]+d_{y}[u(x,y)] = x+y

u(x,y) = ( (1/2)·x^{2}+(1/2)·y^{2} )

d_{x}[u(x,y)] = x

d_{y}[u(x,y)] = y


d_{x}[u(x,y)]+d_{y}[u(x,y)] = x·y

u(x,y) = (1/4)·( yx^{2}+(-1)·(1/3)·x^{3}+xy^{2}+(-1)·(1/3)·y^{3} )

d_{x}[u(x,y)] = 2yx+(-1)·x^{2}+y^{2}

d_{y}[u(x,y)] = 2xy+(-1)·y^{2}+x^{2}


curvas elípticas:

elipses de coordenada: < cos[n](t),sin[n](t) >

cos[n](0) = n

sin[n](0) = 0

cos[n](pi/2) = ( n^{n+1}+(-1) )^{(1/(n+1))}

sin[n](pi/2) = 1

cos[n](pi) = (-n)

sin[n](pi) = 0

cos[n]( (-1)·(pi/2) ) = ( (-1)·(-n)^{n+1}+1 )^{(1/(n+1))}

sin[n]( (-1)·(pi/2) ) = (-1)


sin[n](x) = sum[ (-1)^{k_{1}...k_{n}}·( 1/(2·(k_{1}...k_{n})+1)! )·...

... (x/n)^{2·(k_{1}...k_{n})+1} ]

cos[n](x) = sum[ (-1)^{k_{1}...k_{n}}·( 1/(2·(k_{1}...k_{n}))! )·...

... (x/n)^{2·(k_{1}...k_{n})} ]

lim[ x --> 0 ][ ( sin[n](x)/x ) ] = 1

No hay comentarios:

Publicar un comentario