l = longitud del hombre de pié.
somier:
m·d_{tt}^{2}[z(t)] = P·l·( x+y )
z(t) = A·e^{2^{(1/2)}·( (P·l)/m )^{(1/2)}·t}
colchón:
m·d_{tt}^{2}[z(t)] = (-1)·P·l·( x+y )
z(t) = A·e^{2^{(1/2)}·( (P·l)/m )^{(1/2)}·it}
váter:
m·d_{tt}^{2}[z(t)] = P·( x^{2}+y^{2} )
z(t) = ( (1/3)^{(1/2)}·(P/m)^{(1/2)}·t )^{(-2)}
ducha:
m·d_{tt}^{2}[z(t)] = (-P)·( x^{2}+y^{2} )
z(t) = ( (1/3)^{(1/2)}·(P/m)^{(1/2)}·it )^{(-2)}
sofá-derecho
m·d_{tt}^{2}[z(t)] = (P/l)·( x^{3}+y^{3} )
z(t) = ( ( P/(m·l) )^{(1/2)}·t )^{(-1)}
sofá-izquierdo
m·d_{tt}^{2}[z(t)] = (-1)·(P/l)·( x^{3}+y^{3} )
z(t) = ( ( P/(m·l) )^{(1/2)}·it )^{(-1)}
No desearás nada que le pertenezca al prójimo:
Si no sois del Gestalt,
no hagáis modus ponens de este blog,
que se convierte en destrocter ponens contra vosotros.
Desearás algo que le pertenezca al próximo:
Si sois del Gestalt,
haced modus ponens de este blog,
que no se convierte en destrocter ponens contra vosotros.
d_{x}[u(x,y)]+d_{y}[u(x,y)] = f(x)+g(y)
u(x,y) = int[ f(x) ]d[x]+int[ g(y) ]d[y]
d_{x}[u(x,y)]+d_{y}[u(x,y)] = x+y
u(x,y) = ( (1/2)·x^{2}+(1/2)·y^{2} )
d_{x}[u(x,y)] = x
d_{y}[u(x,y)] = y
d_{x}[u(x,y)]+d_{y}[u(x,y)] = x·y
u(x,y) = (1/4)·( yx^{2}+(-1)·(1/3)·x^{3}+xy^{2}+(-1)·(1/3)·y^{3} )
d_{x}[u(x,y)] = 2yx+(-1)·x^{2}+y^{2}
d_{y}[u(x,y)] = 2xy+(-1)·y^{2}+x^{2}
curvas elípticas:
elipses de coordenada: < cos[n](t),sin[n](t) >
cos[n](0) = n
sin[n](0) = 0
cos[n](pi/2) = ( n^{n+1}+(-1) )^{(1/(n+1))}
sin[n](pi/2) = 1
cos[n](pi) = (-n)
sin[n](pi) = 0
cos[n]( (-1)·(pi/2) ) = ( (-1)·(-n)^{n+1}+1 )^{(1/(n+1))}
sin[n]( (-1)·(pi/2) ) = (-1)
sin[n](x) = sum[ (-1)^{k_{1}...k_{n}}·( 1/(2·(k_{1}...k_{n})+1)! )·...
... (x/n)^{2·(k_{1}...k_{n})+1} ]
cos[n](x) = sum[ (-1)^{k_{1}...k_{n}}·( 1/(2·(k_{1}...k_{n}))! )·...
... (x/n)^{2·(k_{1}...k_{n})} ]
lim[ x --> 0 ][ ( sin[n](x)/x ) ] = 1
No hay comentarios:
Publicar un comentario