mc^{2}·( 1/( 1+(-1)·( d_{t}[x]/c )^{2} )^{(1/2)} ) = qgx
mc^{2}·( 1/( 1+(-1)·( d_{t}[y]/c )^{2} )^{(1/2)} ) = (-1)·qgy
d_{t}[x(t)] = c·cos( g(t) )
d_{t}[y(t)] = c·sin( h(t) )
mc = qg·( sin(g(t)) /o(t)o/ g(t) )·sin(g(t))
mc = (-1)·qg·( cos(h(t)) /o(t)o/ h(t) )·cos(h(t))
g(t) = (1/2)·( (qg)/(mc) )·t
h(t) = (-1)·(1/2)·( (qg)/(mc) )·t
No hay comentarios:
Publicar un comentario