Definició:
[As][ s > 0 ==> [En_{0}][ n_{0}€N & [An][ n > n_{0} ==> a_{n} > s ] ] ]
[As][ s < 0 ==> [En_{0}][ n_{0}€N & [An][ n > n_{0} ==> a_{n} < s ] ] ]
Exemple:
[Ak][ k€N ==> n+k no és acotada-límit superiorment ].
Sigui s > 0 ==>
Es defineish n_{0} > s ==>
Sigui n > n_{0} ==>
n > s
Sigui k€N ==>
n+k >] n > s
Exemple:
[Ak][ k€N ==> (-n)+(-k) no és acotada-límit inferiorment ].
Sigui s < 0 ==>
Es defineish n_{0} > (-s) ==>
Sigui n > n_{0} ==>
n > (-s)
(-n) < s
Sigui k€N ==>
(-n)+(-k) [< (-n) < s
Teorema:
Si [En_{0}][ n_{0}€N & [An][ n > n_{0} ==> a_{n} > n ] ] ==> ...
... a_{n} no és acotada-límit superiorment.
Sigui s > 0 ==>
Es defineish n_{0} = max{n_{1},n_{2}} & ...
... n_{1} > s & [An][ n > n_{2} ==> a_{n} > n ]
Sigui n > n_{0} ==>
a_{n} > n > s
Teorema:
Si [En_{0}][ n_{0}€N & [An][ n > n_{0} ==> a_{n} < (-n) ] ] ==> ...
... a_{n} no és acotada-límit inferiorment.
Sigui s < 0 ==>
Es defineish n_{0} = max{n_{1},n_{2}} & ...
... n_{1} > (-s) & [An][ n > n_{2} ==> a_{n} < (-n) ]
Sigui n > n_{0} ==>
a_{n} < (-n) < s
Teorema:
Siguin a_{1},...,a_{n} > 0 ==> a_{1}+...+a_{n} no és acotada-límit superiorment.
Sigui s > 0 ==>
Es defineish M = min{a_{1},...,a_{n}} ==>
Es defienish n_{0} > (s/M) ==>
Sigui n > n_{0} ==>
a_{1}+...+a_{n} >] Mn > Mn_{0} > s
Teorema:
Siguin a_{1},...,a_{n} < 0 ==> a_{1}+...+a_{n} no és acotada-límit inferiorment.
Sigui s < 0 ==>
Es defineish M = max{a_{1},...,a_{n}} ==>
Es defienish n_{0} > (s/M) ==>
Sigui n > n_{0} ==>
a_{1}+...+a_{n} [< Mn < Mn_{0} < s
Teorema:
Si a_{n} & b_{n} no son acotades-límit superiorment ==> ...
... a_{n}+b_{n} no és acotada-límit superiorment.
Sigui s > 0 ==>
Sigui s_{1} = (s/2) & s_{2} = (s/2) ==>
Es defienish n_{0} = max{n_{1},n_{2}} & ...
... [An][ n > n_{1} ==> a_{n} > s_{1} ] & [An][ n > n_{2} ==> b_{n} > s_{2} ] ==>
Sigui n > n_{0} ==>
a_{n}+b_{n} > s_{1}+s_{2} = s
Teorema:
Si a_{n} & b_{n} no son acotades-límit inferiorment ==> ...
... a_{n}+b_{n} no és acotada-límit inferiorment.
Sigui s < 0 ==>
Sigui s_{1} = (s/2) & s_{2} = (s/2) ==>
Es defienish n_{0} = max{n_{1},n_{2}} & ...
... [An][ n > n_{1} ==> a_{n} < s_{1} ] & [An][ n > n_{2} ==> b_{n} < s_{2} ] ==>
Sigui n > n_{0} ==>
a_{n}+b_{n} < s_{1}+s_{2} = s
Problema-lema:
[Ak][ k€N ==> ( (n+k)^{2}/n ) no és acotada-límit superiorment ].
Sigui s > 0 ==>
Es defineish n_{0} > s ==>
Sigui n > n_{0} ==>
n > s
Sigui k€N ==>
( (n+k)^{2}/n ) = ( (n^{2}+2nk+k^{2})/n ) >] (n^{2}/n) > n > s
Problema-lema:
[Ak][ k€N ==> (-1)·( (n+k)^{2}/n ) no és acotada-límit inferiorment ].
Sigui s < 0 ==>
Es defineish n_{0} > (-s) ==>
Sigui n > n_{0} ==>
n > (-s)
(-n) < s
Sigui k€N ==>
(-1)·( (n+k)^{2}/n ) = (-1)·( (n^{2}+2nk+k^{2})/n ) [< (-1)·(n^{2}/n) < (-n) < s
Problema-lema:
[Ak][ k€N ==> ( n^{2}/(n+(-k)) ) no és acotada-límit superiorment ].
Sigui s > 0 ==>
Sigui k€N ==>
Es defineish n_{0} = max{n_{1},k} & n_{1} > s ==>
Sigui n > n_{0} ==>
n > s
( n^{2}/(n+(-k)) ) = ( ((n+(-k))^{2}+2(n+(-k))k+k^{2})/(n+(-k)) ) >] ...
... (n+(-k))+2k+( k^{2}/(n+(-k)) ) > n+k > n > s
Problema-lema:
[Ak][ k€N ==> (-1)·( n^{2}/(n+(-k)) ) no és acotada-límit inferiorment ].
Sigui s < 0 ==>
Sigui k€N ==>
Es defineish n_{0} = max{n_{1},k} & n_{1} > (-s) ==>
Sigui n > n_{0} ==>
n > (-s)
(-n) < s
(-1)·( n^{2}/(n+(-k)) ) = (-1)·( ((n+(-k))^{2}+2(n+(-k))k+k^{2})/(n+(-k)) ) = ...
... (-1)·( (n+(-k))+2k+( k^{2}/(n+(-k)) ) ) < (-n)+(-k) < (-n) < s
Definició:
[Es][ s > 0 ==> [An_{0}][ n_{0}€N ==> [En][ n > n_{0} & a_{n} [< s ] ] ]
[Es][ s < 0 ==> [An_{0}][ n_{0}€N ==> [En][ n > n_{0} & a_{n} >] s ] ] ]
Exemple:
[Ak][ k€N ==> ( 1/(n+k) ) està acotada superiorment ]
Es defienish s >] 1 ==>
Sigui n_{0}€N ==>
Es defineixh n = n_{0}+1 ==>
n > n_{0}
1 [< n_{0}+1 = n
( 1/(n+k) ) [< (1/n) [< 1 [< s
Exemple:
[Ak][ k€N ==> (-1)·( 1/(n+k) ) està acotada inferiorment ]
Es defienish s [< (-1) ==>
Sigui n_{0}€N ==>
Es defineixh n = n_{0}+1 ==>
n > n_{0}
1 [< n_{0}+1 = n
(-n) [< (-1)
(-1)·( 1/(n+k) ) >] (-1)·(1/n) >] (-1) >] s
Problema-lema:
[Ak][ k€N ==> ( 1/(n+(-k)) ) està acotada superiorment ]
Es defienish s >] 1 ==>
Sigui n_{0}€N ==>
Es defineixh n = (n_{0}+1)+k ==>
n > n_{0}
1 [< n_{0}+1
( 1/(n+(-k)) ) = ( 1/(n_{0}+1) ) [< 1 [< s
Problema-lema:
[Ak][ k€N ==> ( 1/(n+(-k)) ) està acotada superiorment ]
Es defienish s [< (-1) ==>
Sigui n_{0}€N ==>
Es defineixh n = (n_{0}+1)+k ==>
n > n_{0}
1 [< n_{0}+1
(-1)( n_{0}+1 ) [< (-1)
(-1)·( 1/(n+(-k)) ) = (-1)·( 1/(n_{0}+1) ) >] (-1) >] s
Teorema:
Si a_{n} & b_{n} son acotades-límit superiorment ==> ...
... a_{n}+b_{n} és acotada-límit superiorment.
Es defineish s > 0 & s_{1} = (s/2) & s_{2} = (s/2) ==>
Sigui n_{0}€N ==>
Siguin n_{1},n_{2}€N ==>
Es defineish n = max{n_{0}+1,n_{1}+1,n_{2}+1} & ...
... [En][ n > n_{1} ==> a_{n} [< s_{1} ] & [En][ n > n_{2} ==> b_{n} [< s_{2} ] ==>
a_{n}+b_{n} [< s_{1}+s_{2} = s
Teorema:
Si a_{n} & b_{n} son acotades-límit inferiorment ==> ...
... a_{n}+b_{n} és acotada-límit inferiorment.
Es defineish s < 0 & s_{1} = (s/2) & s_{2} = (s/2) ==>
Sigui n_{0}€N ==>
Siguin n_{1},n_{2}€N ==>
Es defineish n = max{n_{0}+1,n_{1}+1,n_{2}+1} & ...
... [En][ n > n_{1} ==> a_{n} >] s_{1} ] & [En][ n > n_{2} ==> b_{n} >] s_{2} ] ==>
a_{n}+b_{n} >] s_{1}+s_{2} = s
No hay comentarios:
Publicar un comentario