viernes, 4 de junio de 2021

geometría diferencial general

H_{jk}·f(x^{i}) = int-int-int[ R_{ijk}^{i} ] d[x^{i}]d[x^{j}]d[x^{k}]

M_{jj} = int-int[ R_{jjj}^{j} ] d[x^{j}]d[x^{j}]

M_{kk} = int-int[ R_{kkk}^{k} ] d[x^{k}]d[x^{k}]


H_{jk}·f(x^{i}) = ...

... int-int-int[ R_{ijk}^{i} = ( (x^{i}+1)/x^{i} )·( x^{j} )^{0}·( x^{k} )^{0} ] ...

... d[x^{i}]d[x^{j}]d[x^{k}]


H_{23}·f(x) = ( x+ln(x) )·yz

H_{31}·f(y) = ( y+ln(y) )·zx

H_{12}·f(z) = ( z+ln(z) )·xy


M_{11} = (1/2)·x^{2}+( ln(x) )^{2}·[er-h]_{k!:2}( ln(x) )

M_{22} = (1/2)·y^{2}+( ln(y) )^{2}·[er-h]_{k!:2}( ln(y) )

M_{33} = (1/2)·z^{2}+( ln(z) )^{2}·[er-h]_{k!:2}( ln(z) )


H_{jk}·f(x^{i}) = ...

... int-int-int[ R_{ijk}^{i} = ( (( x^{i} )^{n}+1)/x^{i} )·( x^{j} )^{0}·( x^{k} )^{0} ] ...

... d[x^{i}]d[x^{j}]d[x^{k}]


H_{23}·f(x) = ( (1/n)·x^{n}+ln(x) )·yz

H_{31}·f(y) = ( (1/n)·y^{n}+ln(y) )·zx

H_{12}·f(z) = ( (1/n)·z^{n}+ln(z) )·xy


M_{11} = (1/n)·( 1/(n+1) )·x^{n+1}+( ln(x) )^{2}·[er-h]_{k!:2}( ln(x) )

M_{22} = (1/n)·( 1/(n+1) )·y^{n+1}+( ln(y) )^{2}·[er-h]_{k!:2}( ln(y) )

M_{33} = (1/n)·( 1/(n+1) )·z^{n+1}+( ln(z) )^{2}·[er-h]_{k!:2}( ln(z) )

No hay comentarios:

Publicar un comentario