domingo, 20 de junio de 2021

Dioses del universo

Dios || Déu-Cron:

{{0},{(-0)}}

d_{xx}^{2}[y(x)] = y(x)

y(x) = e^{x} || y(x) = e^{(-x)}


Diosa || Déa-Cron:

{{0i},{(-0)i}}

d_{xx}^{2}[y(x)] = (-1)·y(x)

y(x) = e^{ix} || y(x) = e^{(-i)·x}


Jota-Cron:

j = e^{(1/4)·pi·i}

{{0j},{(-0)j}}

d_{xx}^{2}[y(x)] = i·y(x)

y(x) = e^{jx} || y(x) = e^{(-j)·x}


Kaesa-Cron:

k = e^{(-1)·(1/4)·pi·i}

{{0k},{(-0)k}}

d_{xx}^{2}[y(x)] = (-i)·y(x)

y(x) = e^{kx} || y(x) = e^{(-k)·x}


Alfa-Cron:

a = e^{(1/8)·pi·i}

{{0a},{(-0)a}}

d_{xx}^{2}[y(x)] = j·y(x)

y(x) = e^{ax} || y(x) = e^{(-a)·x}


Beta-Cron:

b = e^{(-1)·(3/8)·pi·i}

{{0b},{(-0)b}}

d_{xx}^{2}[y(x)] = (-j)·y(x)

y(x) = e^{bx} || y(x) = e^{(-b)·x}


Gamma-Cron:

c = e^{(-1)·(1/8)·pi·i}

{{0c},{(-0)c}}

d_{xx}^{2}[y(x)] = k·y(x)

y(x) = e^{cx} || y(x) = e^{(-c)·x}


Delta-Cron:

d = e^{(3/8)·pi·i}

{{0d},{(-0)d}}

d_{xx}^{2}[y(x)] = (-k)·y(x)

y(x) = e^{dx} || y(x) = e^{(-d)·x}


Alfa-Hexa-Cron:

u_{a} = e^{(1/16)·pi·i}

{{0u_{a}},{(-0)u_{a}}}

d_{xx}^{2}[y(x)] = a·y(x)

y(x) = e^{u_{a}x} || y(x) = e^{(-1)·u_{a}·x}


Alfa-Hexa-Daesa-Cron:

v_{a} = e^{(-1)·(7/16)·pi·i}

{{0v_{a}},{(-0)v_{a}}}

d_{xx}^{2}[y(x)] = (-a)·y(x)

y(x) = e^{v_{a}x} || y(x) = e^{(-1)·v_{a}·x}


Beta-Hexa-Cron:

u_{b} = e^{(-1)·(3/16)·pi·i}

{{0u_{b}},{(-0)u_{b}}}

d_{xx}^{2}[y(x)] = b·y(x)

y(x) = e^{u_{b}x} || y(x) = e^{(-1)·u_{b}·x}


Beta-Hexa-Daesa-Cron:

v_{b} = e^{(-1)·(5/16)·pi·i}

{{0v_{b}},{(-0)v_{b}}}

d_{xx}^{2}[y(x)] = (-b)·y(x)

y(x) = e^{v_{b}x} || y(x) = e^{(-1)·v_{b}·x}


Gamma-Hexa-Cron:

u_{c} = e^{(-1)·(1/16)·pi·i}

{{0u_{c}},{(-0)u_{c}}}

d_{xx}^{2}[y(x)] = c·y(x)

y(x) = e^{u_{c}x} || y(x) = e^{(-1)·u_{c}·x}


Gamma-Hexa-Daesa-Cron:

v_{c} = e^{(7/16)·pi·i}

{{0v_{c}},{(-0)v_{c}}}

d_{xx}^{2}[y(x)] = (-c)·y(x)

y(x) = e^{v_{c}x} || y(x) = e^{(-1)·v_{c}·x}


Delta-Hexa-Cron:

u_{d} = e^{(3/16)·pi·i}

{{0u_{d}},{(-0)u_{d}}}

d_{xx}^{2}[y(x)] = d·y(x)

y(x) = e^{u_{d}x} || y(x) = e^{(-1)·u_{d}·x}


Delta-Hexa-Daesa-Cron:

v_{d} = e^{(5/16)·pi·i}

{{0v_{d}},{(-0)v_{d}}}

d_{xx}^{2}[y(x)] = (-d)·y(x)

y(x) = e^{v_{d}x} || y(x) = e^{(-1)·v_{d}·x}

No hay comentarios:

Publicar un comentario