domingo, 11 de abril de 2021

destructor anti destrucció de centre

e^{ix} = sum[ (-1)^{k}·(1/(2k)!)·x^{2k} ]+i·sum[ (-1)^{k}·(1/(2k+1)!)·x^{(2k+1)} ]

e^{ix} = cos(x)+i·sin(x)


e^{ix} = (-1)·( cos(x)+i·sin(x) )

e^{ix} = (-1)·cos(x)+(-i)·sin(x)


e^{i(x/m)} = sum[ (-1)^{k}·(1/(2k)!)·(x/m)^{2k} ]+i·sum[ (-1)^{k}·(1/(2k+1)!)·(x/m)^{(2k+1)} ]

e^{i(x/m)} = cos(x/m)+i·sin(x/m)


e^{i(x/m)} = (-1)·( cos(x/m)+i·sin(x/m) )

e^{i(x/m)} = (-1)·cos(x/m)+(-i)·sin(x/m)

No hay comentarios:

Publicar un comentario