Si x < y_{n} & y_{n} < y_{n+1} ==> x < y_{n+1}
min{(0.n),(0.1)} < (0.(n+1))
Si z > y_{n} & y_{n} > y_{n+(-1)} ==> z > y_{n+(-1)}
min{1+(-1)·(0.n),(0.1)} < 1+(-1)·(0.(n+(-1)))
Si x = x & x < y_{n} ==> x < y_{n}
min{0,(0.n)} < (0.n)
Si z = z & z > y_{n} ==> z > y_{n}
min{0,1+(-1)·(0.n)} < 1+(-1)·(0.n)
Si y_{n} = y_{n} & y_{n} < y_{n+1} ==> y_{n} < y_{n+1}
min{0,(0.1)} < (0.1)
Si y_{n} = y_{n} & y_{n} > y_{n+(-1)} ==> y_{n} > y_{n+(-1)}
min{0,(0.1)} < (0.1)
Si f(y_{n}) = max{1,y_{n}} ==> y_{n} [< f(y_{n})
(0.n) [< 1
Si f(y_{n}) = min{0,y_{n}} ==> y_{n} >] f(y_{n})
Si f(y_{n}) = sup{1,y_{n}} ==> y_{n} < f(y_{n})
(0.n) < 1+s
Si f(y_{n}) = inf{0,y_{n}} ==> y_{n} > f(y_{n})
(0,(0.n)]_{A} [ |=| ] [(0.n),1)_{A} = (0,1)_{A}
0 < x [< (0.n) |=| (0.n) [< y < 1
[0,(0.n))_{A} [ |=| ] ((0.n),1]_{A} = [0,1]_{A}
No hay comentarios:
Publicar un comentario