domingo, 11 de abril de 2021

transitiu tenebrós

Si x < y_{n} & y_{n} < y_{n+1} ==> x < y_{n+1}

min{(0.n),(0.1)} < (0.(n+1))

Si z > y_{n} & y_{n} > y_{n+(-1)} ==> z > y_{n+(-1)}

min{1+(-1)·(0.n),(0.1)} < 1+(-1)·(0.(n+(-1)))


Si x = x & x < y_{n} ==> x < y_{n}

min{0,(0.n)} < (0.n)

Si z = z & z > y_{n} ==> z > y_{n}

min{0,1+(-1)·(0.n)} < 1+(-1)·(0.n)


Si y_{n} = y_{n} & y_{n} < y_{n+1} ==> y_{n} < y_{n+1}

min{0,(0.1)} < (0.1)

Si y_{n} = y_{n} & y_{n} > y_{n+(-1)} ==> y_{n} > y_{n+(-1)}

min{0,(0.1)} < (0.1)


Si f(y_{n}) = max{1,y_{n}} ==> y_{n} [< f(y_{n})

(0.n) [< 1

Si f(y_{n}) = min{0,y_{n}} ==> y_{n} >] f(y_{n})


Si f(y_{n}) = sup{1,y_{n}} ==> y_{n} < f(y_{n})

(0.n) < 1+s

Si f(y_{n}) = inf{0,y_{n}} ==> y_{n} > f(y_{n})


(0,(0.n)]_{A} [ |=| ] [(0.n),1)_{A} = (0,1)_{A}

0 < x [< (0.n) |=| (0.n) [< y < 1

[0,(0.n))_{A} [ |=| ] ((0.n),1]_{A} = [0,1]_{A}

No hay comentarios:

Publicar un comentario