sábado, 6 de marzo de 2021

integrals

int[ e^{x^{3}+3x} ] d[x] = e^{x^{3}+3x} [o(x)o] ln(x^{2}+1) [o(x)o] ln(x) [o(x)o] (1/6)·x


int[ e^{2x^{4}+4x^{2}} ] d[x] = ...

... e^{2x^{4}+4x^{2}} [o(x)o] ln(x^{3}+x) [o(x)o] ln(3x^{2}+1) [o(x)o] ...

... ln(x) [o(x)o] (1/48)·x


int[ e^{3x^{6}+6x^{3}} ] d[x] = ...

... e^{3x^{6}+6x^{3}} [o(x)o] ln(x^{5}+x^{2}) [o(x)o] ln(5x^{4}+2x) [o(x)o] ...

... ln(20x^{3}+2) [o(x)o] (-1)·(1/x) [o(x)o] (1/1080)·x


m_{0}·d_{tt}^{2}[x(t)] = ae^{(1/2)·(F/m)·t^{2}+vt}

d_{t}[x(t)] = e^{(F/(2m))·t^{2}+vt} [o(t)o] ln((F/m)·t+v) [o(t)o] (m/F)·(a/m_{0})·t

x(t) = ...

... ( e^{(F/(2m))·t^{2}+vt} [o(t)o] ln((F/m)·t+v) [o(t)o] (m/F)·t ) [o( (1/2)·t^{2} )o] ...

... ( (ln((F/m)·t+v)+(-1))·((F/m)·t+v) [o(t)o] (m/F)·t ) [o( (1/2)·t^{2} )o] ...

... (m/F)·(a/m_{0})·(1/2)·t^{2}

No hay comentarios:

Publicar un comentario