jueves, 26 de marzo de 2020

integral de producte integral logarítmic

∫ [ ( f(x) )^{n} ] L[x] = ...
... ln( (1/(n+1))·( f(x) )^{(n+1)} ) [o( ln(x) )o] ( ln( f(x) ) )^{[o( ln(x) )o)](-1)}


∫ [ ( ax^{2}+bx )^{n} ] L[x] = ...
... ln( (1/(n+1))·( ax^{2}+bx )^{(n+1)} ) [o( ln(x) )o] ln( ( 1/(2a) )·ln(2ax+b) )


∫ [ ( ax^{3}+bx^{2}+cx )^{n} ] L[x] = ...
... ln( (1/(n+1))·( ax^{3}+bx^{2}+cx )^{(n+1)} ) [o( ln(x) )o] ...
... ln( ln(3ax^{2}+2bx+c) ) [o( ln(x) )o] ln( ( 1/(6a) )·ln(6ax+2b) )

No hay comentarios:

Publicar un comentario