sábado, 28 de marzo de 2020

integral irracional

∫ [ ( ax+bx^{(1/2)} )^{n} ] d[x] = ∫ [ ( ax+bx^{(1/2)} )^{n}·( 2x^{(1/2)} ) ] d[x^{(1/2)}] = ...
... ( 1/(n+1) )( ax+bx^{(1/2)} )^{(n+1)} [o( x^{(1/2)} )o] ...
... ( 1/(2a) )·ln( 2ax^{(1/2)}+b ) [o( x^{(1/2)} )o] x


∫ [ ( ax+bx^{(2/3)}+cx^{(1/3)} )^{n} ] d[x] = ...
... ∫ [ ( ax+bx^{(2/3)}+cx^{(1/3)} )^{n}·( 3x^{(2/3)} ) ] d[x^{(1/3)}] = ...
... ( 1/(n+1) )( ax+bx^{(2/3)}+cx^{(1/3)} )^{(n+1)} [o( x^{(1/3)} )o] ...
... ln( 3ax^{(2/3)}+2bx^{(1/3)}+c ) [o( x^{(1/3)} )o] ...
... ( 1/(6a) )·ln( 6ax^{(1/3)}+2b ) [o( x^{(1/3)} )o] x

No hay comentarios:

Publicar un comentario