viernes, 13 de noviembre de 2020

ecuació de estat

PV = kT·e^{aT}


V = (1/P)·kT·e^{aT}

P = (1/V)·kT·e^{aT}

T = (1/a)·e-pow[1]( (PV)/k )


d_{P}[V] = (-1)·(V/P)

d_{V}[P] = (-1)·(P/V)


d_{T}[V] = (V/T)+(V·a)

d_{T}[P] = (P/T)+(P·a)


d_{V}[T] = (P/k)·(1/a)·( 1/(1+(aT)) )·( k/(PV) )·(aT)

d_{P}[T] = (V/k)·(1/a)·( 1/(1+(aT)) )·( k/(PV) )·(aT)


PV = kT·ln(aT)


V = (1/P)·kT·ln(aT)

P = (1/V)·kT·ln(aT)

T = (1/a)·ln-pow[1]( (PV)/k )


d_{P}[V] = (-1)·(V/P)

d_{V}[P] = (-1)·(P/V)


d_{T}[V] = (V/T)+(k/P)

d_{T}[P] = (P/T)+(k/V)


d_{V}[T] = (P/k)·(1/a)·( 1/(1+( 1/ln(aT) )) )·( k/(PV) )·(aT)

d_{P}[T] = (V/k)·(1/a)·( 1/(1+( 1/ln(aT) )) )·( k/(PV) )·(aT)

No hay comentarios:

Publicar un comentario