m·( d_{t}[x]/( 1+(-1)·(d_{t}[x]^{2}/c^{2}) )^{(1/2)} ) = p
m·( d_{tt}^{2}[x]/( 1+(-1)·(d_{t}[x]^{2}/c^{2}) )^{(3/2)} ) = F
d_{t}[ d_{t}[x]^{2} ] = 2·d_{t}[x]·d_{tt}^{2}[x]
mc^{2}·( 1/( 1+(-1)·(d_{t}[x]^{2}/c^{2}) )^{(1/2)} )+(-1)·mc^{2}+mc^{2} = E
mc^{2}·( 1/( 1+(-1)·(d_{t}[x]^{2}/c^{2}) )^{(1/2)} ) = mc^{2} <==> ...
... d_{t}[x] = 0
mc^{2}·( 1/( 1+(-1)·(d_{t}[x]^{2}/c^{2}) )^{(1/2)} ) = E <==> ...
... d_{t}[x] = ( (1+(-1)·(mc^{2})/E) )^{(1/2)}·c
... x(t) = ( (1+(-1)·(mc^{2})/E) )^{(1/2)}·ct
... E >] mc^{2}
mc^{2}·( 1/( 1+(-1)·(d_{t}[x]^{2}/c^{2}) )^{(1/2)} ) = h·(1/t) <==> ...
... d_{t}[x] = ( (1+(-1)·(mc^{2}·t)/h) )^{(1/2)}·c
... x(t) = (-1)·(2/3)·( h/(mc) )·( (1+(-1)·(mc^{2}·t)/h) )^{(3/2)}...
... 0 < t = (1/n)·( h/(mc^{2}) ) [< ( h/(mc^{2}) )
mc^{2}·( 1/( 1+(-1)·(d_{t}[x]^{2}/c^{2}) )^{(1/2)} ) = f(t) <==> ...
... d_{t}[x] = ( (1+(-1)·(mc^{2})/f(t)) )^{(1/2)}·c
... x(t) = (1/3)·( f(t) )^{3} [o(t)o] ( f(t) )^{[o(t)o](-2)} [o(t)o] ...
... (2/3)·( 1/(mc^{2}) )·( (1+(-1)·(mc^{2})/f(t)) )^{(3/2)}...
... x(t) = ( int[ f(t) ] d[t] )^{[o(t)o]2} [o(t)o] ( f(t) )^{[o(t)o](-1)} [o(t)o] ...
... (2/3)·( 1/(mc^{2}) )·( (1+(-1)·(mc^{2})/f(t)) )^{(3/2)}...
... f(t) >] mc^{2}
( 1/(n+1) )·( f(t) )^{n+1} = ( int[ f(t) ] d[t] )^{[o(t)o]n} [o(t)o] f(t)
No hay comentarios:
Publicar un comentario