jueves, 24 de septiembre de 2020

acción-reacción

h_{i}(F) = x_{j} <==> h_{j}( (-1)·F ) = (-1)·x_{i}

h_{i}( (-1)·F ) = x_{j} <==> h_{j}(F) = (-1)·x_{i}


h_{i}(acción) = coordenadas_{j} <==> h_{j}( (-1)·acción ) = (-1)·coordenadas_{i}

h_{i}( (-1)·acción ) = coordenadas_{j} <==> h_{j}( acción ) = (-1)·coordenadas_{i}


h_{i}(acción-en-el-bien) = j <==> h_{j}(reacción-en-el-bien) = i

h_{i}(acción-en-el-mal) = j <==> h_{j}(reacción-en-el-mal) = i


i cocina a j <==> lo símbolo de j cocina a i

i compra cosas de j <==> lo símbolo de j compra cosas de i

i hace petas de j <==> lo símbolo de j hace petas de i

i dispara a j <==> lo símbolo de j dispara a i

i roba a j <==> lo símbolo de j roba a i

i viola a j <==> lo símbolo de j viola a i


La turbina de lo barco:

m·d_{tt}^{2}[ z(t) ] = ...

... cos(at)·( sin(at) )^{2}+(-1)·( cos(at) )^{2}·sin(at)+(1/k)·cos(at)·sin(at)

m·d_{tt}^{2}[ (-1)·z(t) ] = ...

... sin(at)·( cos(at) )^{2}+(-1)·( sin(at) )^{2}·cos(at)+(-1)·(1/k)·cos(at)·sin(at)


< cos(at), sin(at), 0 > [o] ...

... < cos(at)·( sin(at) )^{2},(-1)·( cos(at) )^{2}·sin(at),(1/k)·cos(at)·sin(at) > = 0

< (-1)·sin(at), cos(at), k > [o] ...

... < cos(at)·( sin(at) )^{2},(-1)·( cos(at) )^{2}·sin(at),(1/k)·cos(at)·sin(at) > = 0


< sin(at), cos(at), 0 > [o] ...

... < sin(at)·( cos(at) )^{2},(-1)·( sin(at) )^{2}·cos(at),(-1)·(1/k)·cos(at)·sin(at) > = 0

< cos(at), (-1)·sin(at), k > [o] ...

... < sin(at)·( cos(at) )^{2},(-1)·( sin(at) )^{2}·cos(at),(-1)·(1/k)·cos(at)·sin(at) > = 0


at = 0

< cos(at),sin(at),0 > = <1,0,0>

< sin(at), cos(at),0 > = <0,1,0>

< (-1)·sin(at),cos(at),k > = <0,1,k>

< cos(at), (-1)·sin(at),k > = <1,0,k>


at = (pi/2)

< cos(at),sin(at),0 > = <0,1,0>

< sin(at), cos(at),0 > = <1,0,0>

< (-1)·sin(at),cos(at),k > = <(-1),0,k>

< cos(at), (-1)·sin(at),k > = <0,(-1),k>


at = pi

< cos(at),sin(at),0 > = <(-1),0,0>

< sin(at), cos(at),0 > = <0,(-1),0>

< (-1)·sin(at),cos(at),k > = <0,(-1),k>

< cos(at), (-1)·sin(at),k > = <(-1),0,k>


at = (-1)·(pi/2)

< cos(at),sin(at),0 > = <0,(-1),0>

< sin(at), cos(at),0 > = <(-1),0,0>

< (-1)·sin(at),cos(at),k > = <1,0,k>

< cos(at), (-1)·sin(at),k > = <0,1,k>


< cos(at),sin(at),0 > = giro-positivo

< sin(at), cos(at),0 > = giro-negativo

< (-1)·sin(at),cos(at),k > = velocidad-positiva

< cos(at), (-1)·sin(at),k > = velocidad-negativa

No hay comentarios:

Publicar un comentario