h_{i}(F) = x_{j} <==> h_{j}( (-1)·F ) = (-1)·x_{i}
h_{i}( (-1)·F ) = x_{j} <==> h_{j}(F) = (-1)·x_{i}
h_{i}(acción) = coordenadas_{j} <==> h_{j}( (-1)·acción ) = (-1)·coordenadas_{i}
h_{i}( (-1)·acción ) = coordenadas_{j} <==> h_{j}( acción ) = (-1)·coordenadas_{i}
h_{i}(acción-en-el-bien) = j <==> h_{j}(reacción-en-el-bien) = i
h_{i}(acción-en-el-mal) = j <==> h_{j}(reacción-en-el-mal) = i
i cocina a j <==> lo símbolo de j cocina a i
i compra cosas de j <==> lo símbolo de j compra cosas de i
i hace petas de j <==> lo símbolo de j hace petas de i
i dispara a j <==> lo símbolo de j dispara a i
i roba a j <==> lo símbolo de j roba a i
i viola a j <==> lo símbolo de j viola a i
La turbina de lo barco:
m·d_{tt}^{2}[ z(t) ] = ...
... cos(at)·( sin(at) )^{2}+(-1)·( cos(at) )^{2}·sin(at)+(1/k)·cos(at)·sin(at)
m·d_{tt}^{2}[ (-1)·z(t) ] = ...
... sin(at)·( cos(at) )^{2}+(-1)·( sin(at) )^{2}·cos(at)+(-1)·(1/k)·cos(at)·sin(at)
< cos(at), sin(at), 0 > [o] ...
... < cos(at)·( sin(at) )^{2},(-1)·( cos(at) )^{2}·sin(at),(1/k)·cos(at)·sin(at) > = 0
< (-1)·sin(at), cos(at), k > [o] ...
... < cos(at)·( sin(at) )^{2},(-1)·( cos(at) )^{2}·sin(at),(1/k)·cos(at)·sin(at) > = 0
< sin(at), cos(at), 0 > [o] ...
... < sin(at)·( cos(at) )^{2},(-1)·( sin(at) )^{2}·cos(at),(-1)·(1/k)·cos(at)·sin(at) > = 0
< cos(at), (-1)·sin(at), k > [o] ...
... < sin(at)·( cos(at) )^{2},(-1)·( sin(at) )^{2}·cos(at),(-1)·(1/k)·cos(at)·sin(at) > = 0
at = 0
< cos(at),sin(at),0 > = <1,0,0>
< sin(at), cos(at),0 > = <0,1,0>
< (-1)·sin(at),cos(at),k > = <0,1,k>
< cos(at), (-1)·sin(at),k > = <1,0,k>
at = (pi/2)
< cos(at),sin(at),0 > = <0,1,0>
< sin(at), cos(at),0 > = <1,0,0>
< (-1)·sin(at),cos(at),k > = <(-1),0,k>
< cos(at), (-1)·sin(at),k > = <0,(-1),k>
at = pi
< cos(at),sin(at),0 > = <(-1),0,0>
< sin(at), cos(at),0 > = <0,(-1),0>
< (-1)·sin(at),cos(at),k > = <0,(-1),k>
< cos(at), (-1)·sin(at),k > = <(-1),0,k>
at = (-1)·(pi/2)
< cos(at),sin(at),0 > = <0,(-1),0>
< sin(at), cos(at),0 > = <(-1),0,0>
< (-1)·sin(at),cos(at),k > = <1,0,k>
< cos(at), (-1)·sin(at),k > = <0,1,k>
< cos(at),sin(at),0 > = giro-positivo
< sin(at), cos(at),0 > = giro-negativo
< (-1)·sin(at),cos(at),k > = velocidad-positiva
< cos(at), (-1)·sin(at),k > = velocidad-negativa
No hay comentarios:
Publicar un comentario