sábado, 22 de febrero de 2020

integrals

∫ [ ( ln(x) )^{n} ] d[x] = (1/(n+1))·( ln(x) )^{n+1} [o(x)o] (1/2)·x^{2}


∫ [ ( ln( f(x) ) )^{n} ] d[x] = ...
... (1/(n+1))·( ln( f(x) ) )^{n+1} [o(x)o] ∫ [ f(x) ] d[x] [o(x)o] ( f(x) )^{[o(x)o](-1)}


∫ [ ( ln( ax^{2}+bx ) )^{n} ] d[x] = ...
... (1/(n+1))·( ln( ax^{2}+bx ) )^{n+1} [o(x)o] ( a·(1/3)·x^{3}+b·(1/2)·x^{2} ) [o(x)o] (1/2a)·ln( 2ax+b )

No hay comentarios:

Publicar un comentario