∑ ( x^{k} ) = ( (x^{n+1}+(-1))/(x+(-1)) )
Si 0 < x < 1 ==> ∑ ( x^{k} ) < ( 1/(1+(-x)) )
∑ ( x^{pk} ) = ( (x^{p(n+1)}+(-1))/(x^{p}+(-1)) )
Si 0 < x < 1 ==> ∑ ( x^{pk} ) < ( 1/(1+(-1)·x^{p}) )
∑ ( e^{kx} ) = ( (e^{(n+1)x}+(-1))/(e^{x}+(-1)) )
Si x < 0 ==> ∑ ( e^{kx} ) < ( 1/(1+(-1)·e^{x}) )
No hay comentarios:
Publicar un comentario