f(x) [o(x)o] g(x) = int[ d_{x}[f(x)]d_{x}[g(x)] ]d[x]
int[g(x)]d[x] [o(x)o] int[f(x)]d[x] = int[h(x)]d[x] <==> f(x)=( h(x)/g(x) )
int[g(x)]d[x] [o(x)o] ( int[f(x)]d[x]+f(x) ) = int[h(x)]d[x] <==> f(x)=e^{(-x)}·int[( h(x)/g(x) )·e^{x}]d[x]
int[g(x)]d[x] [o(x)o] ( int[f(x)]d[x]+d_{x}[f(x)] ) = int[h(x)]d[x] <==> ...
...f(x)=int[ cos(s)·int[( h(x)/g(x) )·cos(x)]d[x] ]d[x]+int[ sin(s)·int[( h(x)/g(x) )·sin(x)]d[x] ]d[x]
int[g(x)]d[x] [o(x)o] int[f(x)]d[x] = x <==> f(x)=( 1/g(x) )
int[g(x)]d[x] [o(x)o] ( int[f(x)]d[x]+f(x) ) = x <==> f(x)=e^{(-x)}·int[( 1/g(x) )·e^{x}]d[x]
int[g(x)]d[x] [o(x)o] ( int[f(x)]d[x]+d_{x}[f(x)] ) = x <==> ...
...f(x)=int[ cos(s)·int[( 1/g(x) )·cos(x)]d[x] ]d[x]+int[ sin(s)·int[( 1/g(x) )·sin(x)]d[x] ]d[x]
int[g(x)]d[x] [o(x)o] int[f(x)]d[x] = ax <==> f(x)=( a/g(x) )
int[g(x)]d[x] [o(x)o] ( int[f(x)]d[x]+f(x) ) = ax <==> f(x)=e^{(-x)}·int[( a/g(x) )·e^{x}]d[x]
int[g(x)]d[x] [o(x)o] ( int[f(x)]d[x]+d_{x}[f(x)] ) = ax <==> ...
...f(x)=int[ cos(s)·int[( a/g(x) )·cos(x)]d[x] ]d[x]+int[ sin(s)·int[( a/g(x) )·sin(x)]d[x] ]d[x]
No hay comentarios:
Publicar un comentario