Teoría de electricidad y de gravedad:
Principio:
[EW][ W(q) = W ]
[EW][ W( d_{t}[q] ) = W ]
Principio:
[EC][ W(q) = C·q ]
[ER][ W( d_{t}[q] ) = R·d_{t}[q] ]
Anexo:
[ q ] = Coulomb
[ d_{t}[q] ] = ( Coulomb / Segundo ) = Ampere
[ C ] = ( Voltio / Coulomb )
[ R ] = ( Voltio / Ampere )
Principio:
[Ep][EW][ W(q) = W·(1/p)^{n}·q^{n} ]
[EI][EW][ W( d_{t}[q] ) = W·( 1/I )^{n}·d_{t}[q]^{n} ]
Principio: [ del circuito L-C ]
L·d_{tt}^{2}[q] = sum[k = 1]-[n][ W_{k}(q) ]
Principio: [ del circuito L-R ]
L·d_{tt}^{2}[q] = sum[k = 1]-[n][ W_{k}( d_{t}[q] ) ]
Anexo:
[ L ] = ( Joule / ( Ampere )^{2} )
[ W_{k} ] = ( Joule / Coulomb ) = Voltio
Definición:
U_{k}(q) = int[ W_{k}(q) ]d[q]
Anexo:
[ U_{k}(q) ] = ( Joule / Coulomb )·Coulomb = Joule
Ley: [ fundamental del circuito L-C ]
L·d_{tt}^{2}[q] = sum[k = 1]-[n][ W_{k}(q) ]
<==>
(L/2)·d_{t}[q]^{2} = sum[k = 1]-[n][ U_{k}(q) ]
Definición:
N_{k}( d_{t}[q] ) = int[ W_{k}( d_{t}[q] ) ]d[ d_{t}[q] ]
Anexo:
[ N_{k}( d_{t}[q] ) ] = ( Joule / Coulomb )·( Coulomb / Segundo ) = Vatio
Ley: [ fundamental del circuito L-R ]
L·d_{tt}^{2}[q] = sum[k = 1]-[n][ W_{k}( d_{t}[q] ) ]
<==>
L·d_{t}[q]^{[o(t)o] 2} = sum[k = 1]-[n][ N_{k}( d_{t}[q] ) ]
Ley:
Si W(q) = W ==> U(q) = Wq
Ley:
Si W( d_{t}[q] ) = W ==> N( d_{t}[q] ) = W·d_{t}[q]
Ley:
Si W(q) = C·q ==> U(q) = C·(1/2)·q^{2}
Ley:
Si W( d_{t}[q] ) = R·d_{t}[q] ==> N( d_{t}[q] ) = R·(1/2)·d_{t}[q]^{2}
Ley:
Si W(q) = W+(-C)·q ==> U(q) = Wq+(-C)·(1/2)·q^{2}+(-1)·(1/2)·W·(W/C)
Ley:
Si W( d_{t}[q] ) = W+(-R)·d_{t}[q] ==> ...
... N( d_{t}[q] ) = W·d_{t}[q]+(-R)·(1/2)·d_{t}[q]^{2}+(-1)·(1/2)·W·(W/R)
Ley:
Si W(q) = W·(1/p)^{n}·q^{n} ==> U(q) = W·(1/p)^{n}·( 1/(n+1) )·q^{n+1}
Ley:
Si W( d_{t}[q] ) = W·( 1/I )^{n}·d_{t}[q]^{n} ==> ...
... N( d_{t}[q] ) = W·( 1/I )^{n}·( 1/(n+1) )·d_{t}[q]^{n+1}
Teoría de Mecánica de energía y de potencia:
Principio:
[EF][ F(q) = F ]
[EF][ F( d_{t}[x] ) = F ]
Principio:
[Ek][ F(x) = (-k)·x ]
[Eb][ F( d_{t}[x] ) = (-b)·d_{t}[x] ]
Principio:
[Er][EF][ F(x) = (-F)·(1/r)^{n}·x^{n} ]
[Ev][EF][ F( d_{t}[x] ) = (-F)·(1/v)^{n}·d_{t}[x]^{n} ]
Principio: [ fundamental de la dinámica en posición ]
m·d_{tt}^{2}[x] = sum[k = 1]-[n][ F_{k}(x) ]
Principio: [ fundamental de la dinámica en velocidad ]
m·d_{tt}^{2}[x] = sum[k = 1]-[n][ F_{k}( d_{t}[x] ) ]
Definición:
U_{k}(x) = int[ F_{k}(x) ]d[x]
Anexo:
[ U_{k}(x) ] = Newton · Metro = Joule
Ley: [ fundamental de la energía ]
m·d_{tt}^{2}[x] = sum[k = 1]-[n][ F_{k}(x) ]
<==>
(m/2)·d_{t}[x]^{2} = sum[k = 1]-[n][ U_{k}(x) ]
Definición:
N_{k}( d_{t}[x] ) = int[ F_{k}( d_{t}[x] ) ]d[ d_{t}[x] ]
Anexo:
[ N_{k}( d_{t}[x] ) ] = Newton·( Metro / Segundo ) = Vatio
Ley: [ fundamental de la potencia ]
m·d_{tt}^{2}[x] = sum[k = 1]-[n][ F_{k}( d_{t}[x] ) ]
<==>
m·d_{t}[x]^{[o(t)o] 2} = sum[k = 1]-[n][ N_{k}( d_{t}[x] ) ]
Ley:
Si F(x) = F ==> U(x) = Fx
Ley:
Si F( d_{t}[x] ) = F ==> N( d_{t}[x] ) = F·d_{t}[x]
Ley:
Si F(x) = (-k)·x ==> U(x) = (-k)·(1/2)·x^{2}
Ley:
Si F( d_{t}[x] ) = (-b)·d_{t}[x] ==> N( d_{t}[x] ) = (-b)·(1/2)·d_{t}[x]^{2}
Ley:
Si F(x) = F+(-k)·x ==> U(x) = Fx+(-k)·(1/2)·x^{2}+(-1)·(1/2)·F·(F/k)
Ley:
Si F( d_{t}[x] ) = F+(-b)·d_{t}[x] ==> ...
... N( d_{t}[x] ) = F·d_{t}[x]+(-b)·(1/2)·d_{t}[x]^{2}+(-1)·(1/2)·F·(F/b)
Ley:
Si F(x) = (-F)·(1/r)^{n}·x^{n} ==> U(x) = (-F)·(1/r)^{n}·( 1/(n+1) )·x^{n+1}
Ley:
Si F( d_{t}[x] ) = (-F)·(1/v)^{n}·d_{t}[x]^{n} ==> ...
... N( d_{t}[x] ) = (-F)·(1/v)^{n}·( 1/(n+1) )·d_{t}[x]^{n+1}
Teoría de fundamentos de la Mecánica:
Principio:
[EF][Eh][ F(t) = F·h(ut) ]
[EF][Eh][ p(t) = ( Ft )·h(ut) ]
Principio:
[Eq][Eg][Es][ F(t) = qgs ]
[EI][Eg][Es][ F(t) = ( It )·gs ]
Principio: [ fundamental de la dinámica ]
m·d_{tt}^{2}[x] = sum[k = 1]-[n][ F_{k}(t) ]
Anexo
[ m ] = Kilogramo
[ F_{k}(t) ] = Kilogramo·( Metro / ( Segundo )^{2} ) = Newton
Ley:
d_{t}[x] = (1/m)·sum[k = 1]-[n][ int[ F_{k}(t) ]d[t] ]
x(t) = (1/m)·sum[k = 1]-[n][ int-int[ F_{k}(t) ]d[t]d[t] ]
Definición:
p_{k}(t) = int[ F_{k}(t) ]d[t]
Ley: [ fundamental del momento ]
m·d_{tt}^{2}[x] = sum[k = 1]-[n][ F_{k}(t) ]
<==>
m·d_{t}[x] = sum[k = 1]-[n][ p_{k}(t) ]
Anexo
[ p_{k}(t) ] = Kilogramo·( Metro / Segundo ) = Hamilton
Ley:
d_{tt}^{2}[x] = (1/m)·sum[k = 1]-[n][ d_{t}[ p_{k}(t) ] ]
x(t) = (1/m)·sum[k = 1]-[n][ int[ p_{k}(t) ]d[t] ]
Ley:
( F(t) = F & F = 0 ) <==> ( p(t) = mv & x(t) = vt )
Ley:
Si F(t) = F·h(ut) ==>
d_{t}[x] = (1/m)·F·(1/u)·int[ h(ut) ]d[ut]
x(t) = (1/m)·F·(1/u)^{2}·int-int[ h(ut) ]d[ut]d[ut]
Ley:
Si p(t) = ( Ft )·h(ut) ==>
d_{tt}^{2}[x] = (1/m)·F·( h(ut)+t·d_{ut}[ h(ut) ]·u )
x(t) = (1/m)·( F·(1/2)·t^{2} [o(t)o] (1/u)·int[ h(ut) ]d[ut] )
Teoría de fundamentos de la electricidad y de la gravedad:
Principio:
[EW][Eh][ W(t) = W·h(ut) ]
[EW][Eh][ H(t) = ( Wt )·h(ut) ]
Principio: [ fundamental de la dinámica de carga ]
L·d_{tt}^{2}[q] = sum[k = 1]-[n][ W_{k}(t) ]
Anexo:
[ L ] = ( Voltio / Coulomb )·( Segundo )^{2}
Ley:
d_{t}[q] = (1/L)·sum[k = 1]-[n][ int[ W_{k}(t) ]d[t] ]
q(t) = (1/L)·sum[k = 1]-[n][ int-int[ W_{k}(t) ]d[t]d[t] ]
Definición:
H_{k}(t) = int[ W_{k}(t) ]d[t]
Anexo:
[ H_{k}(t) ] = Voltio · Segundo
Ley: [ fundamental del momento de carga ]
L·d_{tt}^{2}[q] = sum[k = 1]-[n][ W_{k}(t) ]
<==>
L·d_{t}[q] = sum[k = 1]-[n][ H_{k}(t) ]
Ley:
d_{tt}^{2}[q] = (1/L)·sum[k = 1]-[n][ d_{t}[ H_{k}(t) ] ]
q(t) = (1/L)·sum[k = 1]-[n][ int[ H_{k}(t) ]d[t] ]
Ley:
( W(t) = W & W = 0 ) <==> ( H(t) = LI & q(t) = It )
Ley:
Si W(t) = W·h(ut) ==>
d_{t}[q] = (1/L)·W·(1/u)·int[ h(ut) ]d[ut]
q(t) = (1/L)·W·(1/u)^{2}·int-int[ h(ut) ]d[ut]d[ut]
Ley:
Si H(t) = ( Wt )·h(ut) ==>
d_{tt}^{2}[q] = (1/L)·W·( h(ut)+t·d_{ut}[ h(ut) ]·u )
q(t) = (1/L)·( W·(1/2)·t^{2} [o(t)o] (1/u)·int[ h(ut) ]d[ut] )
Universidad de Stroniken:
Fundamentos de la física I:
Fundamentos de la mecánica.
Mecánica-de-Energía-y-de-Potencia
Fundamentos de la física II
Fundamentos de la electricidad y la gravedad.
Electricidad-y-Gravedad.
Mecánica-de-Velocidad-y-de-Rotación
Electro-magnetismo-y-Gravito-magnetismo.
Termodinámica.
Geofísica.
Física-cuántica
Mecánica-cuántica.
Relatividad.
Teoría-de-Cuerdas.
No hay comentarios:
Publicar un comentario