miércoles, 1 de mayo de 2024

electricidad-y-gravedad y mecánica-de-energía-y-de-potencia y fundamentos-de-la-mecánica y fundamentos-de-la-electricidad

Teoría de electricidad y de gravedad:

Principio:

[EW][ W(q) = W ]

[EW][ W( d_{t}[q] ) = W ]


Principio:

[EC][ W(q) = C·q ]

[ER][ W( d_{t}[q] ) = R·d_{t}[q] ]

Anexo:

[ q ] = Coulomb

[ d_{t}[q] ] = ( Coulomb / Segundo ) = Ampere

[ C ] = ( Voltio / Coulomb )

[ R ] = ( Voltio / Ampere )


Principio:

[Ep][EW][ W(q) = W·(1/p)^{n}·q^{n} ]

[EI][EW][ W( d_{t}[q] ) = W·( 1/I )^{n}·d_{t}[q]^{n} ]


Principio: [ del circuito L-C ]

L·d_{tt}^{2}[q] = sum[k = 1]-[n][ W_{k}(q) ]

Principio: [ del circuito L-R ]

L·d_{tt}^{2}[q] = sum[k = 1]-[n][ W_{k}( d_{t}[q] ) ]

Anexo:

[ L ] = ( Joule / ( Ampere )^{2} )

[ W_{k} ] = ( Joule / Coulomb ) = Voltio


Definición:

U_{k}(q) = int[ W_{k}(q) ]d[q]

Anexo:

[ U_{k}(q) ] = ( Joule / Coulomb )·Coulomb = Joule

Ley: [ fundamental del circuito L-C ]

L·d_{tt}^{2}[q] = sum[k = 1]-[n][ W_{k}(q) ]

<==>

(L/2)·d_{t}[q]^{2} = sum[k = 1]-[n][ U_{k}(q) ]


Definición:

N_{k}( d_{t}[q] ) = int[ W_{k}( d_{t}[q] ) ]d[ d_{t}[q] ]

Anexo:

[ N_{k}( d_{t}[q] ) ] = ( Joule / Coulomb )·( Coulomb / Segundo ) = Vatio

Ley: [ fundamental del circuito L-R ]

L·d_{tt}^{2}[q] = sum[k = 1]-[n][ W_{k}( d_{t}[q] ) ]

<==>

L·d_{t}[q]^{[o(t)o] 2} = sum[k = 1]-[n][ N_{k}( d_{t}[q] ) ]


Ley:

Si W(q) = W ==> U(q) = Wq

Ley:

Si W( d_{t}[q] ) = W ==> N( d_{t}[q] ) = W·d_{t}[q]


Ley:

Si W(q) = C·q ==> U(q) = C·(1/2)·q^{2} 

Ley:

Si W( d_{t}[q] ) = R·d_{t}[q] ==> N( d_{t}[q] ) = R·(1/2)·d_{t}[q]^{2}


Ley:

Si W(q) = W+(-C)·q ==> U(q) = Wq+(-C)·(1/2)·q^{2}+(-1)·(1/2)·W·(W/C)

Ley:

Si W( d_{t}[q] ) = W+(-R)·d_{t}[q] ==> ...

... N( d_{t}[q] ) = W·d_{t}[q]+(-R)·(1/2)·d_{t}[q]^{2}+(-1)·(1/2)·W·(W/R)


Ley:

Si W(q) = W·(1/p)^{n}·q^{n} ==> U(q) = W·(1/p)^{n}·( 1/(n+1) )·q^{n+1}

Ley:

Si W( d_{t}[q] ) = W·( 1/I )^{n}·d_{t}[q]^{n} ==> ...

... N( d_{t}[q] ) = W·( 1/I )^{n}·( 1/(n+1) )·d_{t}[q]^{n+1} 


Teoría de Mecánica de energía y de potencia:

Principio:

[EF][ F(q) = F ]

[EF][ F( d_{t}[x] ) = F ]


Principio:

[Ek][ F(x) = (-k)·x ]

[Eb][ F( d_{t}[x] ) = (-b)·d_{t}[x] ]


Principio:

[Er][EF][ F(x) = (-F)·(1/r)^{n}·x^{n} ]

[Ev][EF][ F( d_{t}[x] ) = (-F)·(1/v)^{n}·d_{t}[x]^{n} ]


Principio: [ fundamental de la dinámica en posición ]

m·d_{tt}^{2}[x] = sum[k = 1]-[n][ F_{k}(x) ]

Principio: [ fundamental de la dinámica en velocidad ]

m·d_{tt}^{2}[x] = sum[k = 1]-[n][ F_{k}( d_{t}[x] ) ]


Definición:

U_{k}(x) = int[ F_{k}(x) ]d[x]

Anexo:

[ U_{k}(x) ] = Newton · Metro = Joule

Ley: [ fundamental de la energía ]

m·d_{tt}^{2}[x] = sum[k = 1]-[n][ F_{k}(x) ]

<==>

(m/2)·d_{t}[x]^{2} = sum[k = 1]-[n][ U_{k}(x) ]


Definición:

N_{k}( d_{t}[x] ) = int[ F_{k}( d_{t}[x] ) ]d[ d_{t}[x] ]

Anexo:

[ N_{k}( d_{t}[x] ) ] = Newton·( Metro / Segundo ) = Vatio

Ley: [ fundamental de la potencia ]

m·d_{tt}^{2}[x] = sum[k = 1]-[n][ F_{k}( d_{t}[x] ) ]

<==>

m·d_{t}[x]^{[o(t)o] 2} = sum[k = 1]-[n][ N_{k}( d_{t}[x] ) ]


Ley:

Si F(x) = F ==> U(x) = Fx

Ley:

Si F( d_{t}[x] ) = F ==> N( d_{t}[x] ) = F·d_{t}[x]


Ley:

Si F(x) = (-k)·x ==> U(x) = (-k)·(1/2)·x^{2} 

Ley:

Si F( d_{t}[x] ) = (-b)·d_{t}[x] ==> N( d_{t}[x] ) = (-b)·(1/2)·d_{t}[x]^{2}


Ley:

Si F(x) = F+(-k)·x ==> U(x) = Fx+(-k)·(1/2)·x^{2}+(-1)·(1/2)·F·(F/k)

Ley:

Si F( d_{t}[x] ) = F+(-b)·d_{t}[x] ==> ...

... N( d_{t}[x] ) = F·d_{t}[x]+(-b)·(1/2)·d_{t}[x]^{2}+(-1)·(1/2)·F·(F/b)


Ley:

Si F(x) = (-F)·(1/r)^{n}·x^{n} ==> U(x) = (-F)·(1/r)^{n}·( 1/(n+1) )·x^{n+1}

Ley:

Si F( d_{t}[x] ) = (-F)·(1/v)^{n}·d_{t}[x]^{n} ==> ...

... N( d_{t}[x] ) = (-F)·(1/v)^{n}·( 1/(n+1) )·d_{t}[x]^{n+1} 


Teoría de fundamentos de la Mecánica:

Principio:

[EF][Eh][ F(t) = F·h(ut) ]

[EF][Eh][ p(t) = ( Ft )·h(ut) ]


Principio:

[Eq][Eg][Es][ F(t) = qgs ]

[EI][Eg][Es][ F(t) = ( It )·gs ]


Principio: [ fundamental de la dinámica ]

m·d_{tt}^{2}[x] = sum[k = 1]-[n][ F_{k}(t) ]

Anexo

[ m ] = Kilogramo

[ F_{k}(t) ] = Kilogramo·( Metro / ( Segundo )^{2} ) = Newton


Ley:

d_{t}[x] = (1/m)·sum[k = 1]-[n][ int[ F_{k}(t) ]d[t] ]

x(t) = (1/m)·sum[k = 1]-[n][ int-int[ F_{k}(t) ]d[t]d[t] ]


Definición:

p_{k}(t) = int[ F_{k}(t) ]d[t]

Ley: [ fundamental del momento ]

m·d_{tt}^{2}[x] = sum[k = 1]-[n][ F_{k}(t) ]

<==>

m·d_{t}[x] = sum[k = 1]-[n][ p_{k}(t) ]

Anexo

[ p_{k}(t) ] = Kilogramo·( Metro / Segundo ) = Hamilton


Ley:

d_{tt}^{2}[x] = (1/m)·sum[k = 1]-[n][ d_{t}[ p_{k}(t) ] ]

x(t) = (1/m)·sum[k = 1]-[n][ int[ p_{k}(t) ]d[t] ]


Ley:

( F(t) = F & F = 0 ) <==> ( p(t) = mv & x(t) = vt )


Ley:

Si F(t) = F·h(ut) ==>

d_{t}[x] = (1/m)·F·(1/u)·int[ h(ut) ]d[ut]

x(t) = (1/m)·F·(1/u)^{2}·int-int[ h(ut) ]d[ut]d[ut]


Ley:

Si p(t) = ( Ft )·h(ut) ==>

d_{tt}^{2}[x] = (1/m)·F·( h(ut)+t·d_{ut}[ h(ut) ]·u ) 

x(t) = (1/m)·( F·(1/2)·t^{2} [o(t)o] (1/u)·int[ h(ut) ]d[ut] )


Teoría de fundamentos de la electricidad y de la gravedad:

Principio:

[EW][Eh][ W(t) = W·h(ut) ]

[EW][Eh][ H(t) = ( Wt )·h(ut) ]


Principio: [ fundamental de la dinámica de carga ]

L·d_{tt}^{2}[q] = sum[k = 1]-[n][ W_{k}(t) ]

Anexo:

[ L ] = ( Voltio / Coulomb )·( Segundo )^{2}


Ley:

d_{t}[q] = (1/L)·sum[k = 1]-[n][ int[ W_{k}(t) ]d[t] ]

q(t) = (1/L)·sum[k = 1]-[n][ int-int[ W_{k}(t) ]d[t]d[t] ]


Definición:

H_{k}(t) = int[ W_{k}(t) ]d[t]

Anexo:

[ H_{k}(t) ] = Voltio · Segundo 

Ley: [ fundamental del momento de carga ]

L·d_{tt}^{2}[q] = sum[k = 1]-[n][ W_{k}(t) ]

<==>

L·d_{t}[q] = sum[k = 1]-[n][ H_{k}(t) ]


Ley:

d_{tt}^{2}[q] = (1/L)·sum[k = 1]-[n][ d_{t}[ H_{k}(t) ] ]

q(t) = (1/L)·sum[k = 1]-[n][ int[ H_{k}(t) ]d[t] ]


Ley:

( W(t) = W & W = 0 ) <==> ( H(t) = LI & q(t) = It )


Ley:

Si W(t) = W·h(ut) ==>

d_{t}[q] = (1/L)·W·(1/u)·int[ h(ut) ]d[ut]

q(t) = (1/L)·W·(1/u)^{2}·int-int[ h(ut) ]d[ut]d[ut]


Ley:

Si H(t) = ( Wt )·h(ut) ==>

d_{tt}^{2}[q] = (1/L)·W·( h(ut)+t·d_{ut}[ h(ut) ]·u ) 

q(t) = (1/L)·( W·(1/2)·t^{2} [o(t)o] (1/u)·int[ h(ut) ]d[ut] )


Universidad de Stroniken:

Fundamentos de la física I:

Fundamentos de la mecánica.

Mecánica-de-Energía-y-de-Potencia


Fundamentos de la física II

Fundamentos de la electricidad y la gravedad.

Electricidad-y-Gravedad.


Mecánica-de-Velocidad-y-de-Rotación

Electro-magnetismo-y-Gravito-magnetismo.


Termodinámica.

Geofísica.


Física-cuántica

Mecánica-cuántica.


Relatividad.

Teoría-de-Cuerdas.

No hay comentarios:

Publicar un comentario