lunes, 4 de abril de 2022

economía dual y osciladors, rotació y politges

Precios en lo Socialismo y en la Social-Democracia:

A(x) = px+(-n)·x^{k}

d_{x}[A(1)] = 0

p = kn

Precios en lo Socialismo Bolivariano y en la Social-Democracia Bolivariana:

B(x) = kpx+(-n)·x^{k}

d_{x}[B(1)] = 0

p = n


Impuestos en la Social-democracia:

C(x) = px+(-n)·x^{(1/k)}

d_{x}[C(1)] = 0

p = (1/k)·n

Impuestos en lo Socialismo:

D(x) = (1/k)·px+(-n)·x^{(1/k)}

d_{x}[D(1)] = 0

p = n


d_{x}[y(x)]+a(x)·y(x) = f(x)

y(x) = e^{(-1)·int[a(x)]d[x]}·int[ f(x)·e^{int[a(x)]d[x]} ]d[x]

d_{x}[y(x)]+(-1)·a(x)·y(x) = (-1)·f(x)

y(x) = e^{int[a(x)]d[x]}·int[ (-1)·f(x)·e^{(-1)·int[a(x)]d[x]} ]d[x]

Demostración:

... ( (-1)·a(x)·e^{(-1)·int[a(x)]d[x]}·int[ f(x)·e^{int[a(x)]d[x]} ]d[x]+f(x) )+...

... a(x)·e^{(-1)·int[a(x)]d[x]}·int[ f(x)·e^{int[a(x)]d[x]} ]d[x] = f(x)

... ( a(x)·e^{int[a(x)]d[x]}·int[ (-1)·f(x)·e^{(-1)·int[a(x)]d[x]} ]d[x]+(-1)·f(x) )+...

... (-1)·a(x)·e^{int[a(x)]d[x]}·int[ (-1)·f(x)·e^{(-1)·int[a(x)]d[x]} ]d[x] = (-1)·f(x)


d_{x}[y(x)]+a(x)·y(x) = (-0)

y(x) = e^{(-1)·int[a(x)]d[x]}

d_{x}[y(x)]+(-1)·a(x)·y(x) = 0

y(x) = e^{int[a(x)]d[x]}


Osciladores de condensador imaginario:

Oscilador circular:

R·d_{t}[q(t)]+i·C·q(t) = 0

q(t) = q_{0}·e^{(C/R)·(-i)t}

R·d_{t}[q(t)]+(-i)·C·q(t) = (-0)

q(t) = q_{0}·e^{(C/R)·it}

Oscilador espiral:

L·d_{tt}^{2}[q(t)]+i·C·q(t) = 0

q(t) = q_{0}·e^{(C/L)^{(1/2)}·jt} || q(t) = q_{0}·e^{(C/L)^{(1/2)}·(-j)t}

L·d_{tt}^{2}[q(t)]+(-i)·C·q(t) = (-0)

q(t) = q_{0}·e^{(C/L)^{(1/2)}·kt} || q(t) = q_{0}·e^{(C/L)^{(1/2)}·(-k)t}


k·j = 1

(-k)·(-j) = 1


Utilidad Dual:

F(x,y) = jx+(k+(-j))·y+(-u)·( px+qy+(-m) )

¬F(x,y) = (-j)·x+((-k)+j)·y+(-v)·( px+qy+(-m) )

G(x,y) = jx+(k+(-j))·y+(-u)·( px+qy )

¬G(x,y) = (-j)·x+((-k)+j)·y+(-v)·( px+qy )

d_{x}[F(1,1)] = 0

d_{y}[F(1,1)] = 0

d_{x}[¬F(1,1)] = 0

d_{y}[¬F(1,1)] = 0

u = (k/m)

v = (-1)·(k/m)

F(1,1) = k

¬F(1,1) = (-k)

G(1,1) = 0

¬G(1,1) = (-0)


j = n

(-j) = (-n)

k+(-j) = n

(-k)+j = (-n)

F(1,1) = 2n

¬F(1,1) = (-2)·n


j = n

(-j) = (-n)

k+(-j) = m

(-k)+j = (-m)

F(1,1) = m+n

¬F(1,1) = (-m)+(-n)


LaGrange Dual:

F(x,y) = (k+(-2))+x^{j}+y^{k+(-j)}+(-u)·( px+qy+(-m) )

¬F(x,y) = ((-k)+2)+(-1)·x^{j}+(-1)·y^{k+(-j)}+(-v)·( px+qy+(-m) )

G(x,y) = (k+(-2))+x^{j}+y^{k+(-j)}+(-u)·( px+qy )

¬G(x,y) = ((-k)+2)+(-1)·x^{j}+(-1)·y^{k+(-j)}+(-v)·( px+qy )

d_{x}[F(1,1)] = 0

d_{y}[F(1,1)] = 0

d_{x}[¬F(1,1)] = 0

d_{y}[¬F(1,1)] = 0

u = (k/m)

v = (-1)·(k/m)

F(1,1) = k

¬F(1,1) = (-k)

G(1,1) = 0

¬G(1,1) = (-0)


F(x,y,z) = ...

... (k+(-2))·(e^{z}+(-z))+e^{jx}+e^{(k+(-j))·y}+(-u)·( pe^{x}+qe^{y}+(-m) )

¬F(x,y,z) = ...

... ((-k)+2)·(e^{z}+(-z))+(-1)·e^{jx}+(-1)·e^{(k+(-j))·y}+(-v)·( pe^{x}+qe^{y}+(-m) )

G(x,y,z) = (k+(-2))·(e^{z}+(-z))+e^{jx}+e^{(k+(-j))·y}+(-u)·( pe^{x}+qe^{y} )

¬G(x,y,z) = ((-k)+2)·(e^{z}+(-z))+(-1)·e^{jx}+(-1)·e^{(k+(-j))·y}+(-v)·( pe^{x}+qe^{y} )

d_{x}[F(0,0,0)] = 0

d_{y}[F(0,0,0)] = 0

d_{x}[¬F(0,0,0)] = 0

d_{y}[¬F(0,0,0)] = 0

u = (k/m)

v = (-1)·(k/m)

F(0,0,0) = k

¬F(0,0,0) = (-k)

G(0,0,0) = 0

¬G(0,0,0) = (-0)


Potencia 1:

F(x,u,v,t) = qg·x(u,v,t)+(-h)·( (c/l)·V·(1/2)·t^{2} )·( e^{iut}+e^{ivt} )

¬F(x,u,v,t) = (-q)g·x(u,v,t)+(-h)·( (-1)·(c/l)·V·(1/2)·t^{2} )·( e^{iut}+e^{ivt} )

G(x,u,v,t) = (-q)(-g)·x(u,v,t)+(-h)·( (c/l)·V·(1/2)·t^{2} )·( e^{iut}+e^{ivt} )

¬G(x,u,v,t) = q(-g)·x(u,v,t)+(-h)·( (-1)·(c/l)·V·(1/2)·t^{2} )·( e^{iut}+e^{ivt} )


Rotación:

d_{t}[x] = d_{t}[y]+(d_{t}[w]/w)·r

d_{t}[x] = d_{t}[y]+(-1)·(d_{t}[w]/w)·r

Centrifugación y Coriolis:

Dos discos iguales cuadrados en ritmo en un Tecnics positivo de aguja r(t):

d_{tt}^{2}[x] = d_{tt}^{2}[y]+(-1)·(d_{t}[w]/w)^{2}·r+(d_{t}[w]/w)·d_{t}[r]

Dos discos iguales cuadrados en ritmo en un Tecnics negativo de aguja r(t):

d_{tt}^{2}[x] = d_{tt}^{2}[y]+(d_{t}[w]/w)^{2}·r+(-1)·(d_{t}[w]/w)·d_{t}[r]


Plato de vinilo:

Pitch positivo = (d_{tt}^{2}[w]/w)·r

Pitch negativo = (-1)·(d_{tt}^{2}[w]/w)·r

Disco cara A = (-1)·(d_{t}[w]/w)^{2}·r

Disco cara B = (d_{t}[w]/w)^{2}·r

Aguja derecha = (d_{t}[w]/w)·d_{t}[r]

Aguja izquierda = (-1)·(d_{t}[w]/w)·d_{t}[r]


Polea simple:

Lley:

Si q_{1} [< q_{2} ==> d_{tt}^{2}[x] [< 0

Si q_{1} > q_{2} ==> d_{tt}^{2}[x] > 0

Deducció:

q_{1}+(-1)·q_{2} [< 0

q_{1}+(-1)·q_{2} > 0


Lley:

Si q_{1} >] q_{2} ==> d_{tt}^{2}[x] >] 0

Si q_{1} < q_{2} ==> d_{tt}^{2}[x] < 0

Deducció:

q_{1}+(-1)·q_{2} >] 0

q_{1}+(-1)·q_{2} < 0

No hay comentarios:

Publicar un comentario