Precios en lo Socialismo y en la Social-Democracia:
A(x) = px+(-n)·x^{k}
d_{x}[A(1)] = 0
p = kn
Precios en lo Socialismo Bolivariano y en la Social-Democracia Bolivariana:
B(x) = kpx+(-n)·x^{k}
d_{x}[B(1)] = 0
p = n
Impuestos en la Social-democracia:
C(x) = px+(-n)·x^{(1/k)}
d_{x}[C(1)] = 0
p = (1/k)·n
Impuestos en lo Socialismo:
D(x) = (1/k)·px+(-n)·x^{(1/k)}
d_{x}[D(1)] = 0
p = n
d_{x}[y(x)]+a(x)·y(x) = f(x)
y(x) = e^{(-1)·int[a(x)]d[x]}·int[ f(x)·e^{int[a(x)]d[x]} ]d[x]
d_{x}[y(x)]+(-1)·a(x)·y(x) = (-1)·f(x)
y(x) = e^{int[a(x)]d[x]}·int[ (-1)·f(x)·e^{(-1)·int[a(x)]d[x]} ]d[x]
Demostración:
... ( (-1)·a(x)·e^{(-1)·int[a(x)]d[x]}·int[ f(x)·e^{int[a(x)]d[x]} ]d[x]+f(x) )+...
... a(x)·e^{(-1)·int[a(x)]d[x]}·int[ f(x)·e^{int[a(x)]d[x]} ]d[x] = f(x)
... ( a(x)·e^{int[a(x)]d[x]}·int[ (-1)·f(x)·e^{(-1)·int[a(x)]d[x]} ]d[x]+(-1)·f(x) )+...
... (-1)·a(x)·e^{int[a(x)]d[x]}·int[ (-1)·f(x)·e^{(-1)·int[a(x)]d[x]} ]d[x] = (-1)·f(x)
d_{x}[y(x)]+a(x)·y(x) = (-0)
y(x) = e^{(-1)·int[a(x)]d[x]}
d_{x}[y(x)]+(-1)·a(x)·y(x) = 0
y(x) = e^{int[a(x)]d[x]}
Osciladores de condensador imaginario:
Oscilador circular:
R·d_{t}[q(t)]+i·C·q(t) = 0
q(t) = q_{0}·e^{(C/R)·(-i)t}
R·d_{t}[q(t)]+(-i)·C·q(t) = (-0)
q(t) = q_{0}·e^{(C/R)·it}
Oscilador espiral:
L·d_{tt}^{2}[q(t)]+i·C·q(t) = 0
q(t) = q_{0}·e^{(C/L)^{(1/2)}·jt} || q(t) = q_{0}·e^{(C/L)^{(1/2)}·(-j)t}
L·d_{tt}^{2}[q(t)]+(-i)·C·q(t) = (-0)
q(t) = q_{0}·e^{(C/L)^{(1/2)}·kt} || q(t) = q_{0}·e^{(C/L)^{(1/2)}·(-k)t}
k·j = 1
(-k)·(-j) = 1
Utilidad Dual:
F(x,y) = jx+(k+(-j))·y+(-u)·( px+qy+(-m) )
¬F(x,y) = (-j)·x+((-k)+j)·y+(-v)·( px+qy+(-m) )
G(x,y) = jx+(k+(-j))·y+(-u)·( px+qy )
¬G(x,y) = (-j)·x+((-k)+j)·y+(-v)·( px+qy )
d_{x}[F(1,1)] = 0
d_{y}[F(1,1)] = 0
d_{x}[¬F(1,1)] = 0
d_{y}[¬F(1,1)] = 0
u = (k/m)
v = (-1)·(k/m)
F(1,1) = k
¬F(1,1) = (-k)
G(1,1) = 0
¬G(1,1) = (-0)
j = n
(-j) = (-n)
k+(-j) = n
(-k)+j = (-n)
F(1,1) = 2n
¬F(1,1) = (-2)·n
j = n
(-j) = (-n)
k+(-j) = m
(-k)+j = (-m)
F(1,1) = m+n
¬F(1,1) = (-m)+(-n)
LaGrange Dual:
F(x,y) = (k+(-2))+x^{j}+y^{k+(-j)}+(-u)·( px+qy+(-m) )
¬F(x,y) = ((-k)+2)+(-1)·x^{j}+(-1)·y^{k+(-j)}+(-v)·( px+qy+(-m) )
G(x,y) = (k+(-2))+x^{j}+y^{k+(-j)}+(-u)·( px+qy )
¬G(x,y) = ((-k)+2)+(-1)·x^{j}+(-1)·y^{k+(-j)}+(-v)·( px+qy )
d_{x}[F(1,1)] = 0
d_{y}[F(1,1)] = 0
d_{x}[¬F(1,1)] = 0
d_{y}[¬F(1,1)] = 0
u = (k/m)
v = (-1)·(k/m)
F(1,1) = k
¬F(1,1) = (-k)
G(1,1) = 0
¬G(1,1) = (-0)
F(x,y,z) = ...
... (k+(-2))·(e^{z}+(-z))+e^{jx}+e^{(k+(-j))·y}+(-u)·( pe^{x}+qe^{y}+(-m) )
¬F(x,y,z) = ...
... ((-k)+2)·(e^{z}+(-z))+(-1)·e^{jx}+(-1)·e^{(k+(-j))·y}+(-v)·( pe^{x}+qe^{y}+(-m) )
G(x,y,z) = (k+(-2))·(e^{z}+(-z))+e^{jx}+e^{(k+(-j))·y}+(-u)·( pe^{x}+qe^{y} )
¬G(x,y,z) = ((-k)+2)·(e^{z}+(-z))+(-1)·e^{jx}+(-1)·e^{(k+(-j))·y}+(-v)·( pe^{x}+qe^{y} )
d_{x}[F(0,0,0)] = 0
d_{y}[F(0,0,0)] = 0
d_{x}[¬F(0,0,0)] = 0
d_{y}[¬F(0,0,0)] = 0
u = (k/m)
v = (-1)·(k/m)
F(0,0,0) = k
¬F(0,0,0) = (-k)
G(0,0,0) = 0
¬G(0,0,0) = (-0)
Potencia 1:
F(x,u,v,t) = qg·x(u,v,t)+(-h)·( (c/l)·V·(1/2)·t^{2} )·( e^{iut}+e^{ivt} )
¬F(x,u,v,t) = (-q)g·x(u,v,t)+(-h)·( (-1)·(c/l)·V·(1/2)·t^{2} )·( e^{iut}+e^{ivt} )
G(x,u,v,t) = (-q)(-g)·x(u,v,t)+(-h)·( (c/l)·V·(1/2)·t^{2} )·( e^{iut}+e^{ivt} )
¬G(x,u,v,t) = q(-g)·x(u,v,t)+(-h)·( (-1)·(c/l)·V·(1/2)·t^{2} )·( e^{iut}+e^{ivt} )
Rotación:
d_{t}[x] = d_{t}[y]+(d_{t}[w]/w)·r
d_{t}[x] = d_{t}[y]+(-1)·(d_{t}[w]/w)·r
Centrifugación y Coriolis:
Dos discos iguales cuadrados en ritmo en un Tecnics positivo de aguja r(t):
d_{tt}^{2}[x] = d_{tt}^{2}[y]+(-1)·(d_{t}[w]/w)^{2}·r+(d_{t}[w]/w)·d_{t}[r]
Dos discos iguales cuadrados en ritmo en un Tecnics negativo de aguja r(t):
d_{tt}^{2}[x] = d_{tt}^{2}[y]+(d_{t}[w]/w)^{2}·r+(-1)·(d_{t}[w]/w)·d_{t}[r]
Plato de vinilo:
Pitch positivo = (d_{tt}^{2}[w]/w)·r
Pitch negativo = (-1)·(d_{tt}^{2}[w]/w)·r
Disco cara A = (-1)·(d_{t}[w]/w)^{2}·r
Disco cara B = (d_{t}[w]/w)^{2}·r
Aguja derecha = (d_{t}[w]/w)·d_{t}[r]
Aguja izquierda = (-1)·(d_{t}[w]/w)·d_{t}[r]
Polea simple:
Lley:
Si q_{1} [< q_{2} ==> d_{tt}^{2}[x] [< 0
Si q_{1} > q_{2} ==> d_{tt}^{2}[x] > 0
Deducció:
q_{1}+(-1)·q_{2} [< 0
q_{1}+(-1)·q_{2} > 0
Lley:
Si q_{1} >] q_{2} ==> d_{tt}^{2}[x] >] 0
Si q_{1} < q_{2} ==> d_{tt}^{2}[x] < 0
Deducció:
q_{1}+(-1)·q_{2} >] 0
q_{1}+(-1)·q_{2} < 0
No hay comentarios:
Publicar un comentario