Principi:
E_{e}(x,y,z) = qk_{e}·(1/r^{2})·( < x,y,z >/r )
B_{e}(x,y,z) = (-1)·qk_{e}·(1/r^{2})·( < d_{t}[x],d_{t}[y],d_{t}[z] >/r )
Lley: [ de anti-gravetat ]
(-r)·(2pi/T) = pq·( k_{e}/m )·(1/r^{2})·( T/(2pi) )
r·(2pi/T) = (-1)·pq·( k_{e}/m )·(1/r^{2})·( T/(2pi) )
T = [ segon ]·[ Radiá ]
Deducció:
d_{tt}^{2}[ r·cos(vt) ] = (-r)·cos(vt)·v^{2}
vT = 2·pi
d_{tt}[r·cos(ut)·sin(vt)] = 0
d_{tt}[r·sin(ut)·sin(vt)] = 0
u = 0
Ecuacions de Maxwell de Fluxe-Zero:
Lley: [ de Maxwell-Coulomb en forma integral ]
anti-potencial[ rot[ E_{e}(r·f(t),r·g(t),r·h(t)) ] ] = ...
... qk_{e}+...
... (1/3)·anti-potencial[ ( 1/(f(t)·g(t)·h(t)) )·int[ B_{e}(r·f(t),r·g(t),r·h(t)) ]d[t] ]
Lley: [ de Maxwell-Ampere en forma integral ]
anti-potencial[ rot[ B_{e}(r·f(t),r·g(t),r·h(t)) ] ] = ...
... d_{t}[q(t)]·k_{e}+...
... (-1)·(1/3)·anti-potencial[ ( 1/(f(t)·g(t)·h(t)) )·d_{t}[ E_{e}(r·f(t),r·g(t),r·h(t),q(t)) ] ]+...
... (-1)·(1/3)·anti-potencial[ ( 1/(f(t)·g(t)·h(t)) )·B_{e}(r·f(t),r·g(t),r·h(t),q(t)) ]
Lley: [ de Maxwell-Coulomb en forma diferencial ]
rot[ E_{e}(r·f(t),r·g(t),r·h(t)) ] = ...
... H_{e}(r·f(t),r·g(t),r·h(t))+(1/3)·( 1/(f(t)·g(t)·h(t)) )·int[ B_{e}(r·f(t),r·g(t),r·h(t)) ]d[t]
Lley: [ de Maxwell-Ampere en forma diferencial ]
rot[ B_{e}(r·f(t),r·g(t),r·h(t)) ] = ...
... J_{e}(r·f(t),r·g(t),r·h(t),q(t))+...
... (-1)·(1/3)·( 1/(f(t)·g(t)·h(t)) )·d_{t}[ E_{e}(r·f(t),r·g(t),r·h(t),q(t)) ]+...
... (-1)·(1/3)·( 1/(f(t)·g(t)·h(t)) )·B_{e}(r·f(t),r·g(t),r·h(t),q(t))
Lley: [ de Maxwell-Coulomb de l'inducció eléctrica ]
H_{e}(r·f(t),r·g(t),r·h(t)) = ...
... rot[ E_{e}(r·f(t),r·g(t),r·h(t)) ]+...
... (1/3)·qk_{e}(1/r^{2})·( 1/(f(t)·g(t)·h(t)) )·< f(t),g(t),h(t) >
Lley: [ de Maxwell-Ampere de l'inducció magnética ]
J_{e}(r·f(t),r·g(t),r·h(t),q(t)) = ...
... rot[ B_{e}(r·f(t),r·g(t),r·h(t)) ]+...
... (1/3)·d_{t}[q(t)]·k_{e}(1/r^{2})·( 1/(f(t)·g(t)·h(t)) )·< f(t),g(t),h(t) >
Lley: [ de Coulomb de l'inducció eléctrica ]
anti-potencial[ H_{e}(r·f(t),r·g(t),r·h(t)) ] = qk_{e}
Lley: [ de Ampere de l'inducció magnética ]
anti-potencial[ J_{e}(r·f(t),r·g(t),r·h(t),q(t)) ] = d_{t}[q(t)]·k_{e}
Lley: [ de Gauss en forma integral ]
anti-potencial[ E_{e}(r·f(t),r·g(t),r·h(t)) ] = ...
... 3qk_{e}·f(t)·g(t)·h(t)
anti-potencial[ B_{e}(r·f(t),r·g(t),r·h(t)) ] = ...
... (-1)·qk_{e}·( d_{t}[f(t)]·g(t)·h(t)+f(t)·d_{t}[g(t)]·h(t)+f(t)·g(t)·d_{t}[h(t)] )
Lley: [ de Gauss en forma diferencial ]
div[ E_{e}(r·f(t),r·g(t),r·h(t)) ] = ...
... 3qk_{e}·(1/r^{3})
div[ B_{e}(r·f(t),r·g(t),r·h(t)) ] = ...
... (-1)·qk_{e}·(1/r^{3})·( ...
... ( d_{tt}^{2}[f(t)]/d_{t}[f(t)] )+...
... ( d_{tt}^{2}[g(t)]/d_{t}[g(t)] )+...
... ( d_{tt}^{2}[h(t)]/d_{t}[h(t)] ) ...
... )
Deducció:
int-int-int[ ( d_{tt}^{2}[x]/d_{t}[x] ) ]( d_{t}[x]·d[t] )d[y]d[z] = d_{t}[x]·yz
Ecucions de Maxwell-Gauss originals:
Lley: [ de Gauss integral ]
anti-potencial[ E_{e}(r,r,r) ] = 3q(r^{s})·k_{e}
anti-potencial[ B_{e}(r,r,r) ] = 0
Lley: [ de Gauss diferencial ]
div[ E_{e}(r,r,r) ] = 3·d_{rrr}^{3}[q(r^{s})·(a/b)]·k_{e}
div[ B_{e}(r,r,r) ] = 0
Deducció:
div[ E_{e}(r,r,r) ] = 3·q(r^{s})·k_{e}(1/r^{3})
div[ E_{e}(r,r,r) ] = 3·q(r^{s})·k_{e}·d_{111}^{3}[(a/b)]·(1/r^{3})
div[ E_{e}(r,r,r) ] = 3·d_{rrr}^{3}[q(r^{s})·(a/b)]·k_{e}
Lley: [ de Maxwell en forma integral ]
anti-potencial[ rot[ E_{e}(r,r,r) ] ] = ...
... qk_{e}+(1/3)·anti-potencial[ int[ B_{e}(r,r,r) ]d[t] ]
anti-potencial[ rot[ B_{e}(r,r,r) ] ] = ...
... d_{t}[q(t)]·k_{e}+(-1)·(1/3)·anti-potencial[ d_{t}[ E_{e}(r,r,r,q(t)) ] ]
Lley: [ de Maxwell en forma diferencial ]
rot[ E_{e}(r,r,r) ] = H_{e}(r,r,r)+(1/3)·int[ B_{e}(r,r,r) ]d[t]
rot[ B_{e}(r,r,r) ] = J_{e}(r,r,r)+(-1)·(1/3)·d_{t}[ E_{e}(r,r,r) ]
Densitats de carga:
Lley:
anti-potencial[ E_{e}(r,r,r) ] = 3q·(a_{1}·r)·k_{e}
div[ E_{e}(r,r,r) ] = 3·d_{rrr}^{3}[q·(a_{1}·r)]·k_{e}
Lley:
anti-potencial[ E_{e}(r,r,r) ] = 3q·(a_{2}·r^{2})·k_{e}
div[ E_{e}(r,r,r) ] = 3·d_{rrr}^{3}[q·(a_{2}·r^{2})·(1/2)]·k_{e}
Lley:
n >] 3
anti-potencial[ E_{e}(r,r,r) ] = 3q·(a_{n}·r^{n})·k_{e}
div[ E_{e}(r,r,r) ] = 3·d_{rrr}^{3}[q·(a_{n}·r^{n})·(1/(n·(n+(-1))·(n+(-2))))]·k_{e}
Lley:
anti-potencial[ E_{e}(r,r,r) ] = 3q·(a_{n}·r^{(-n)})·k_{e}
div[ E_{e}(r,r,r) ] = 3·d_{rrr}^{3}[q·(a_{n}·r^{(-n)})·(1/((-n)·(n+1)·(n+2)))]·k_{e}
Ecuacions de fluxe-zero para un rectangle cúbic:
Lley:
anti-potencial[ rot[ E_{e}(ra,rb,rc) ] ] = ...
... qk_{e}+...
... (1/3)·anti-potencial[ ( 1/(abc) )·int[ B_{e}(ra,rb,rc) ]d[t] ]
anti-potencial[ rot[ B_{e}(ra,rb,rc) ] ] = ...
... d_{t}[q(t)]·k_{e}+...
... (-1)·(1/3)·anti-potencial[ ( 1/(abc) )·d_{t}[ E_{e}(ra,rb,rc,q(t)) ] ]+...
... (-1)·(1/3)·anti-potencial[ ( 1/(abc) )·B_{e}(ra,rb,rc,q(t)) ]
Lley:
rot[ E_{e}(ra,rb,rc) ] = ...
... H_{e}(ra,rb,rc)+(1/3)·( 1/(abc) )·int[ B_{e}(ra,rb,rc) ]d[t]
rot[ B_{e}(ra,rb,rc) ] = ...
... J_{e}(ra,rb,rc,q(t))+...
... (-1)·(1/3)·( 1/(abc) )·d_{t}[ E_{e}(ra,rb,rc,q(t)) ]+...
... (-1)·(1/3)·( 1/(abc) )·B_{e}(ra,rb,rc,q(t))
Lley:
H_{e}(ra,rb,rc) = ...
... rot[ E_{e}(ra,rb,rc) ]+(1/3)·qk_{e}·(1/r^{2})·( 1/(abc) )·< a,b,c >
J_{e}(ra,rb,rc,q(t)) = ...
... rot[ B_{e}(ra,rb,rc) ]+(1/3)·d_{t}[q(t)]·k_{e}·(1/r^{2})·( 1/(abc) )·< a,b,c >
Lley:
Vectors de inducció en un cub:
H_{e}(rd,rd,rd) = ...
... rot[ E_{e}(rd,rd,rd) ]+(1/3)·qk_{e}·(1/r^{2})·( 1/d^{2} )·< 1,1,1 >
J_{e}(rd,rd,rd,q(t)) = ...
... rot[ B_{e}(rd,rd,rd) ]+(1/3)·d_{t}[q(t)]·k_{e}·(1/r^{2})·( 1/d^{2} )·< 1,1,1 >
Ecuacions de fluxe-zero para un cilindre:
Lley:
anti-potencial[ rot[ E_{e}(r·cos(s),r·sin(s),r·h) ] ] = ...
... qk_{e}+...
... (1/3)·anti-potencial[ ( 1/(cos(s)·sin(s)·h) )·int[ B_{e}(r·cos(s),r·sin(s),r·h) ]d[t] ]
anti-potencial[ rot[ B_{e}(r·cos(s),r·sin(s),r·h) ] ] = ...
... d_{t}[q(t)]·k_{e}+...
... (-1)·(1/3)·anti-potencial[ (1/(cos(s)·sin(s)·h))·d_{t}[ E_{e}(r·cos(s),r·sin(s),r·h,q(t)) ] ]+...
... (-1)·(1/3)·anti-potencial[ (1/(cos(s)·sin(s)·h))·B_{e}(r·cos(s),r·sin(s),r·h,q(t)) ]
Lley:
rot[ E_{e}(r·cos(s),r·sin(s),r·h) ] = ...
... H_{e}(r·cos(s),r·sin(s),r·h)+...
... (1/3)·( 1/(cos(s)·sin(s)·h) )·int[ B_{e}(r·cos(s),r·sin(s),r·h) ]d[t]
rot[ B_{e}(r·cos(s),r·sin(s),r·h) ] = ...
... J_{e}(r·cos(s),r·sin(s),r·h,q(t))+...
... (-1)·(1/3)·( 1/(cos(s)·sin(s)·h) )·d_{t}[ E_{e}(r·cos(s),r·sin(s),r·h,q(t)) ]+...
... (-1)·(1/3)·( 1/(cos(s)·sin(s)·h) )·B_{e}(r·cos(s),r·sin(s),r·h,q(t))
Lley:
Vectors de inducció en els eishos de coordenades de un cilindre que no existeishen:
s = 0+2pi·k <==> ( [1] & [2] )
[1] H_{e}(r,0,r·h) = ...
... rot[ E_{e}(r,0,r·h) ]+(1/3)·qk_{e}·(1/r^{2})·(1/h)·< oo,1,oo·h >
[2] J_{e}(r,0,r·h,q(t)) = ...
... rot[ B_{e}(r,0,r·h) ]+(1/3)·d_{t}[q(t)]·k_{e}·(1/r^{2})·(1/h)·< oo,1,oo·h >
s = pi+2pi·k <==> ( [1] & [2] )
[1] H_{e}((-r),0,r·h) = ...
... rot[ E_{e}((-r),0,r·h) ]+(-1)·(1/3)·qk_{e}·(1/r^{2})·(1/h)·< (-oo),1,oo·h >
[2] J_{e}((-r),0,r·h,q(t)) = ...
... rot[ B_{e}((-r),0,r·h) ]+(-1)·(1/3)·d_{t}[q(t)]·k_{e}·(1/r^{2})·(1/h)·< (-oo),1,oo·h >
s = (pi/2)+2pi·k <==> ( [1] & [2] )
[1] H_{e}(0,r,r·h) = ...
... rot[ E_{e}(0,r,r·h) ]+(1/3)·qk_{e}·(1/r^{2})·(1/h)·< 1,oo,oo·h >
[2] J_{e}(0,r,r·h,q(t)) = ...
... rot[ B_{e}(0,r,r·h) ]+(1/3)·d_{t}[q(t)]·k_{e}·(1/r^{2})·(1/h)·< 1,oo,oo·h >
s = (-1)·(pi/2)+2pi·k <==> ( [1] & [2] )
[1] H_{e}(0,(-r),r·h) = ...
... rot[ E_{e}(0,(-r),r·h) ]+(-1)·(1/3)·qk_{e}·(1/r^{2})·(1/h)·< 1,(-oo),oo·h >
[2] J_{e}(0,(-r),r·h,q(t)) = ...
... rot[ B_{e}(0,(-r),r·h) ]+(-1)·(1/3)·d_{t}[q(t)]·k_{e}·(1/r^{2})·(1/h)·< 1,(-oo),oo·h >
No hay comentarios:
Publicar un comentario