g_{x}(t) = e^{( Wq+Z(1+(-1)·q^{2}) )·it}·f_{x}(t)
g_{y}(t) = e^{( Wq+Z(1+(-1)·q^{2}) )·(-i)t}·f_{y}(t)
g_{x}(t)·g_{y}(t) = f_{x}(t)·f_{y}(t)
d_{t}[g_{x}(t)]·d_{t}[g_{y}(t)] = ...
... d_{t}[f_{x}(t)]·d_{t}[f_{y}(t)]+( Wq+Z(1+(-1)·q^{2}) )^{2}·f_{x}(t)·f_{y}(t) = 0
f_{x}(t) = e^{( Wq+Z(1+(-1)·q^{2}) )·it}
f_{y}(t) = e^{( Wq+Z(1+(-1)·q^{2}) )·it}
f_{x}(t) = e^{( Wq+Z(1+(-1)·q^{2}) )·(-i)t}
f_{y}(t) = e^{( Wq+Z(1+(-1)·q^{2}) )·(-i)t}
ondas radioactivas electro-nucleares:
Tauón <==> e^{W·it} & q = 1 & W > 0
Muón <==> e^{(-W)·it} & q = (-1) & W > 0
Neutrino <==> e^{Z·it} & q = 0 & Z > 0
ondas radioactivas gravito-nucleares:
anti-Tauón <==> e^{W·it} & q = (-1) & W < 0
anti-Muón <==> e^{(-W)·it} & q = 1 & W < 0
anti-Neutrino <==> e^{Z·it} & q = (-0) & Z < 0
anti-electrón <==> e^{q·it} & W = 1 & Z = 0
electrón <==> e^{(-q)·it} & W = 1 & Z = 0
gravitón <==> e^{q·it} & W = (-1) & Z = (-0)
anti-gravitón <==> e^{(-q)·it} & W = (-1) & Z = (-0)
( g_{x}(t) )^{2} = e^{( Wq+Z(1+(-1)·q^{2}) )·it}·( f_{x}(t) )^{2}
( g_{y}(t) )^{2} = e^{( Wq+Z(1+(-1)·q^{2}) )·(-i)t}·( f_{y}(t) )^{2}
( g_{x}(t)·g_{y}(t) )^{2} = ( f_{x}(t)·f_{y}(t) )^{2}
d_{t}[g_{x}(t)]·d_{t}[g_{y}(t)] = ...
... d_{t}[f_{x}(t)]·d_{t}[f_{y}(t)]+( Wq+Z(1+(-1)·q^{2}) )^{2}·( f_{x}(t)·f_{y}(t) )^{2} = 0
f_{x}(t) = ( ( Wq+Z(1+(-1)·q^{2}) )·it )^{(-1)}
f_{y}(t) = ( ( Wq+Z(1+(-1)·q^{2}) )·it )^{(-1)}
f_{x}(t) = ( ( Wq+Z(1+(-1)·q^{2}) )·(-i)t )^{(-1)}
f_{y}(t) = ( ( Wq+Z(1+(-1)·q^{2}) )·(-i)t )^{(-1)}
No hay comentarios:
Publicar un comentario