miércoles, 12 de mayo de 2021

electrodébil

g_{x}(t) = e^{( Wq+Z(1+(-1)·q^{2}) )·it}·f_{x}(t)

g_{y}(t) = e^{( Wq+Z(1+(-1)·q^{2}) )·(-i)t}·f_{y}(t)

g_{x}(t)·g_{y}(t) = f_{x}(t)·f_{y}(t)


d_{t}[g_{x}(t)]·d_{t}[g_{y}(t)] = ...

... d_{t}[f_{x}(t)]·d_{t}[f_{y}(t)]+( Wq+Z(1+(-1)·q^{2}) )^{2}·f_{x}(t)·f_{y}(t) = 0

f_{x}(t) = e^{( Wq+Z(1+(-1)·q^{2}) )·it}

f_{y}(t) = e^{( Wq+Z(1+(-1)·q^{2}) )·it}

f_{x}(t) = e^{( Wq+Z(1+(-1)·q^{2}) )·(-i)t}

f_{y}(t) = e^{( Wq+Z(1+(-1)·q^{2}) )·(-i)t}


ondas radioactivas electro-nucleares:

Tauón <==> e^{W·it} & q = 1 & W > 0

Muón <==> e^{(-W)·it} & q = (-1) & W > 0

Neutrino <==> e^{Z·it} & q = 0 & Z > 0


ondas radioactivas gravito-nucleares:

anti-Tauón <==> e^{W·it} & q = (-1) & W < 0

anti-Muón <==> e^{(-W)·it} & q = 1 & W < 0

anti-Neutrino <==> e^{Z·it} & q = (-0) & Z < 0


anti-electrón <==> e^{q·it} & W = 1 & Z = 0

electrón <==> e^{(-q)·it} & W = 1 & Z = 0


gravitón <==> e^{q·it} & W = (-1) & Z = (-0)

anti-gravitón <==> e^{(-q)·it} & W = (-1) & Z = (-0)


( g_{x}(t) )^{2} = e^{( Wq+Z(1+(-1)·q^{2}) )·it}·( f_{x}(t) )^{2}

( g_{y}(t) )^{2} = e^{( Wq+Z(1+(-1)·q^{2}) )·(-i)t}·( f_{y}(t) )^{2}

( g_{x}(t)·g_{y}(t) )^{2} = ( f_{x}(t)·f_{y}(t) )^{2}


d_{t}[g_{x}(t)]·d_{t}[g_{y}(t)] = ...

... d_{t}[f_{x}(t)]·d_{t}[f_{y}(t)]+( Wq+Z(1+(-1)·q^{2}) )^{2}·( f_{x}(t)·f_{y}(t) )^{2} = 0

f_{x}(t) = ( ( Wq+Z(1+(-1)·q^{2}) )·it )^{(-1)}

f_{y}(t) = ( ( Wq+Z(1+(-1)·q^{2}) )·it )^{(-1)}

f_{x}(t) = ( ( Wq+Z(1+(-1)·q^{2}) )·(-i)t )^{(-1)}

f_{y}(t) = ( ( Wq+Z(1+(-1)·q^{2}) )·(-i)t )^{(-1)}

No hay comentarios:

Publicar un comentario