miércoles, 22 de diciembre de 2021

geometria lineal y geometría diferencial, mecánica teórica

Afinitats:

El Ker de l'afinitat és un espai afí.


< (-c),c >+( < a,(-a) >,< (-a),a > )o< x,y > = < 0,0 >

x = y+(c/a)


< (-c),c >+( < a,(-b) >,< (-a),b > )o< x,y > = < 0,0 >

x = (b/a)·y+(c/a)


< c,c >+( < a,0 >,< 0,a > )o< x,y > = < 0,0 >

x = (1/a)·(-c)

y = (1/a)·(-c)


< c,d >+( < a,0 >,< 0,b > )o< x,y > = < 0,0 >

x = (1/a)·(-c)

y = (1/b)·(-d)


Espai afí:

ax+by = c

x = ( (-b)/a )·y+(c/a)

Base afí:

p+E = < (c/a),0 >+k·< (-b),a >


Base afí:

p+E = < c,0 >+k·< (-b),1 >

Espai afí:

x+by = c


Base afí:

p+E = < c,0 >+k·< (-b),a >

Espai afí:

ax+by = ac


p+E = < c,d >+k·< 1,1 >

q+F = < a,b >+i·< 1,0 >+j·< 0,1 >

(p+E) [&] (q+F) = < c,d >+k·< 1,1 > = < a,b >+(k+(-a)+c)·< 1,0 >+(k+(-b)+d)·< 0,1 >

i = k+(-a)+c

j = k+(-b)+d


Sigui det(A) != 0 ==>

< (-u),(-v) >+A o < x,y > = 0

Sigui C = < u,v > ==>

A o < x,y > = C

ax+by = u

cx+dy = v

(1/det(A))·( a( (-1)·bv+du )+b( av+(-1)·cu ) ) = u

(1/det(A))·( c( (-1)·bv+du )+d( av+(-1)·cu ) ) = v

x = (-1)·(det(Y|C)/det(A))

y = det(X|C)/det(A)


métricas bi-lineales:

< x,y >o( < a,0 >,< 0,a > )o< x,y > = 0

x = s·i

y = s

< x,y >o( < a,0 >,< 0,a > )o< x,y > = 1

x = (1/a)^{(1/2)}·cos(s) = (1/a)^{(1/2)}·( 1+(-1)·t^{2} )^{(1/2)}

y = (1/a)^{(1/2)}·sin(s) = (1/a)^{(1/2)}·t

x [&] y = { s : s = (pi/4)+n·pi }


< x,y >o( < a,0 >,< 0,(-a) > )o< x,y > = 0

x = s

y = s

< x,y >o( < a,0 >,< 0,(-a) > )o< x,y > = 1

x = (1/a)^{(1/2)}·cos(s)

y = i·(1/a)^{(1/2)}·sin(s)

x [&] y = { s : s = arctan(-i) }


< x,y >o( < a,a >,< a,a > )o< x,y > = 0

x = (1/a)^{(1/2)}·s

y = (1/a)^{(1/2)}·(-s)

< x,y >o( < a,a >,< a,a > )o< x,y > = 1

x = (1/a)^{(1/2)}·s

y = (1/a)^{(1/2)}·((-s)+1)

x [&] y = { s : s = (1/2) }


métricas bi-lineales diferenciales:

Primera forma-métrica fonamental:

< d_{u}[f(u,v)],d_{v}[f(u,v)] >o...

... ( < d[u]d[u],d[v]d[u] >,< d[u]d[v],d[v]d[v] > )o...

... < d_{u}[f(u,v)],d_{v}[f(u,v)] > = d[S(u,v)]d[S(u,v)]


Segona forma-métrica fonamental:

< d_{u}[f(u,v)],d_{v}[f(u,v)] >o...

... ( ...

... < (1/2)·u^{2}·d_{uu}^{2}[f(u,v)]·d[u]d[u],vu·d_{vu}^{2}[f(u,v)]·d[v]d[u] >, ...

... < uv·d_{uv}^{2}[f(u,v)]·d[u]d[v],(1/2)·v^{2}·d_{vv}^{2}[f(u,v)]·d[v]d[v] > ...

... )o...

... < d_{u}[f(u,v)],d_{v}[f(u,v)] > = d[S(u,v)]d[S(u,v)]


f(u,v) = e^{iu·t}+e^{iv·t}

d_{u}[f(u,v)] = it·e^{iu·t}

d_{v}[f(u,v)] = it·e^{iv·t}

d_{uu}^{2}[f(u,v)] = (-1)·t^{2}e^{iu·t}

d_{vv}^{2}[f(u,v)] = (-1)·t^{2}e^{iv·t}

(1/2)·( S(u) )^{2} = int-int[ t^{4}·(1/2)·u^{2}·e^{3iu·t} ]d[u]d[u] = ...

... t^{4}·(1/2)·u^{2} [o( (1/2)·u^{2} )o] ...

... (1/4!)·u^{4} [o( (1/2)·u^{2} )o] (-1)·( 1/(3t) )^{2}·e^{3iu·t}

(1/2)·( S(v) )^{2} = int-int[ t^{4}·(1/2)·v^{2}·e^{3iv·t} ]d[v]d[v] = ...

... t^{4}·(1/2)·v^{2} [o( (1/2)·v^{2} )o] ...

... (1/4!)·v^{4} [o( (1/2)·v^{2} )o] (-1)·( 1/(3t) )^{2}·e^{3iv·t}

( S(u,v) )^{2} = ( S(u) )^{2}+( S(v) )^{2}

d[S(u,v)]d[S(u,v)] = d[S(u)]d[S(u)]+d[S(v)]d[S(v)]


Unitats a la menys 1 amb producte integral

Sigui d_{t}[x(t)] = p·t·se^{st} ==>

x(t) = (p/m)·t [o(t)o] (1/2)·t^{2} [o(t)o] e^{st}

d_{tt}^{2}[x(t)] = (p/m)·se^{st}+(p/m)·t·s^{2}·e^{st}


Sigui d_{t}[x(t)] = (F/m)·t^{2}·se^{st} ==>

x(t) = (F/m)·t [o(t)o] (1/3!)·t^{3} [o(t)o] e^{st}

d_{tt}^{2}[x(t)] = (F/m)·2t·se^{st}+(F/m)·t^{2}·s^{2}·e^{st}


Sigui m·d_{t}[x(t)] = p·t^{n}·s_{n}e^{s_{n}·t^{n}} ==>

x(t) = (p/m)·t [o(t)o] ( 1/(n+1) )·t^{n+1} [o(t)o] ...

... ( 1/((-n)+2) )·t^{(-n)+2} [o(t)o] e^{s_{n}·t^{n}}

d_{tt}[x(t)] = (p/m)·nt^{n+(-1)}·s_{n}e^{s_{n}·t^{n}}+...

... (p/m)·t^{n}·(s_{n})^{2}·nt^{n+(-1)}·e^{s_{n}·t^{n}}


Sigui m·d_{t}[x(t)] = F·t^{n+1}·s_{n}e^{s_{n}·t^{n}} ==>

x(t) = (F/m)·t [o(t)o] ( 1/(n+2) )·t^{n+2} [o(t)o] ...

... ( 1/((-n)+2) )·t^{(-n)+2} [o(t)o] e^{s_{n}·t^{n}}

d_{tt}[x(t)] = (F/m)·(n+1)·t^{n}·s_{n}e^{s_{n}·t^{n}}+...

... (F/m)·t^{n+1}·(s_{n})^{2}·nt^{n+(-1)}·e^{s_{n}·t^{n}}


Álgebra-jjeko lineal-dokitx vectorial-dokitx.

Geometri-jjeko lineal-dokitx afini-dokitx.


q-esteike zapati-jjeko,

sere-po-mitxli mio.

q-eseike zapati-jjeko,

no sere-po-mitxli mio.


esteike zapati-jjoika,

sere-proika mio.

eseike zapati-jjoika,

no sere-proika mio.

No hay comentarios:

Publicar un comentario