Si cuando eres pequeño sufres,
recibes la gloria de la luz verdadera,
y pagas condenación.
Si cuando eres pequeño no sufres,
no recibes la gloria de la luz verdadera,
y no pagas condenación.
Con radiación esclerósica,
tienes mucha electricidad en la columna,
y no paras de andar.
Con des-radiación esclerósica,
tienes poca electricidad en la columna,
y paras de andar.
cámara térmica:
( 2pi·q_{0} )·d_{t}[T(t)] = h·f(t)
T(t) = ( h/(2pi·q_{0}) )·int[f(t)]d[t]
( 2pi·q_{0} )·(1/s)·d_{tt}^{2}[T(t)] = h·f(t)
T(t) = ( (hs)/(2pi·q_{0}) )·int-int[f(t)]d[t]d[t]
cámara eléctrica:
( 2pi·q_{0} )·R·d_{t}[q(t)] = h·f(t)
q(t) = ( h/((2pi·q_{0})·R) )·int[f(t)]d[t]
( 2pi·q_{0} )·R·(1/s)·d_{tt}^{2}[q(t)] = h·f(t)
q(t) = ( (hs)/((2pi·q_{0})·R) )·int-int[f(t)]d[t]d[t]
reactor a combustión:
( 2pi·q_{0} )·d_{t}[T(t)] = V·P(t)
reactor eléctrico:
( 2pi·q_{0} )·R·d_{t}[q(t)] = V·P(t)
Termo-electricidad industrial:
( 2pi·q_{0} )·d_{t}[T(t)] = E(t)
( 2pi·q_{0} )·(1/s)·d_{tt}^{2}[T(t)] = E(t)
( 2pi·q_{0} )·d_{t}[T(t)] = I(t)·T(t)
T(t) = T_{k}·e^{( 1/(2pi·q_{0}) )·int[ I(t) ]d[t]}
( 2pi·q_{0} )·d_{t}[T(t)] = ( 1/E(t) )·( I(t) )^{2}·(1/2)·( T(t) )^{2}
T(t) = ( (-1)·( 1/(2pi·q_{0}) )·(1/2)·int[ ( 1/E(t) )·( I(t) )^{2} ]d[t] )^{(-1)}
( 2pi·q_{0} )·d_{t}[T(t)] = ( 1/( E(t) )^{2} )·( I(t) )^{3}·(4/3)·( T(t) )^{3}
T(t) = ...
... ( (-2)·( 1/(2pi·q_{0}) )·(4/3)·int[ ( 1/( E(t) )^{2} )·( I(t) )^{3} ]d[t] )^{(-1)·(1/2)}
( 2pi·q_{0} )·R·d_{t}[q(t)] = E(t)
( 2pi·q_{0} )·R·(1/s)·d_{tt}^{2}[q(t)] = E(t)
( 2pi·q_{0} )·R·d_{t}[q(t)] = A(t)·q(t)
q(t) = q_{k}·e^{( 1/((2pi·q_{0})·R) )·int[ A(t) ]d[t]}
( 2pi·q_{0} )·R·d_{t}[q(t)] = ( 1/E(t) )·( A(t) )^{2}·(1/2)·( q(t) )^{2}
q(t) = ( (-1)·( 1/((2pi·q_{0})·R) )·(1/2)·int[ ( 1/E(t) )·( A(t) )^{2} ]d[t] )^{(-1)}
( 2pi·q_{0} )·R·d_{t}[q(t)] = ( 1/( E(t) )^{2} )·( A(t) )^{3}·(4/3)·( q(t) )^{3}
q(t) = ...
... ( (-2)·( 1/((2pi·q_{0})·R) )·(4/3)·int[ ( 1/( E(t) )^{2} )·( A(t) )^{3} ]d[t] )^{(-1)·(1/2)}
Mecánica industrial:
mc·d_{t}[x(t)] = E(t)
mc·(1/s)·d_{tt}^{2}[x(t)] = E(t)
mc·d_{t}[x(t)] = F(t)·x(t)
x(t) = x_{k}·e^{( 1/(mc) )·int[ F(t) ]d[t]}
mc·d_{t}[x(t)] = ( 1/E(t) )·( F(t) )^{2}·(1/2)·( x(t) )^{2}
x(t) = ( (-1)·( 1/(mc) )·(1/2)·int[ ( 1/E(t) )·( F(t) )^{2} ]d[t] )^{(-1)}
mc·d_{t}[x(t)] = ( 1/( E(t) )^{2} )·( F(t) )^{3}·(4/3)·( x(t) )^{3}
x(t) = ( (-2)·( 1/(mc) )·(4/3)·int[ ( 1/( E(t) )^{2} )·( F(t) )^{3} ]d[t] )^{(-1)·(1/2)}
Demostreu:
Si ( u(x) )^{n} =[m]= x ==> sum[ x = 1 ---> x = (m+(-1)) ][ u(x) ] [< (3/2)·(m+(-1))·m
Si ( u(x) )^{n} =[m]= x ==> ...
... sum[ x = 1 ---> x = (m+(-1)) ][ u(x) ] [< (1/6)·(m+(-1))·m·(2m+5)
Demostració:
u(x) = m+x^{(1/n)}
[Ax][ x >] 1 ==> u(x) [< m+x ]
[Ax][ x >] 1 ==> u(x) [< m+x^{2} ]
Fraccions continues:
(a/b) = q_{1}+( 1/(b/r_{1}) )
(b/r_{1}) = q_{2}+( 1/(r_{1}/r_{2}) )
s_{1} = q_{1} = (P_{1}/Q_{1})
s_{2} = ( q_{1}+(1/q_{2}) ) = ...
... ( (q_{2}P_{1}+P_{0})/(q_{2}Q_{1}+Q_{0}) ) = (P_{2}/Q_{2})
s_{3} = ( q_{1}+( 1/(q_{2}+(1/q_{3})) ) ) = ...
... ( (q_{3}( q_{2}P_{1}+P_{0} )+P_{1})/(q_{3}Q_{2}+Q_{1}) ) = (P_{3}/Q_{3})
Teorema:
s_{n} = ...
... ( (q_{n}P_{n+(-1)}+P_{n+(-2)})/(q_{n}Q_{n+(-1)}+Q_{n+(-2)}) ) = (P_{n}/Q_{n})
Teorema:
s_{n}·Q_{n} = q_{n}·s_{n+(-1)}·Q_{n+(-1)}+s_{n+(-2)}·Q_{n+(-2)}
Demostració:
s_{n}+(-1)·s_{n+(-1)} = (P_{n}/Q_{n})+(-1)·(P_{n+(-1)}/Q_{n+(-1)}) = ...
... (-1)·( s_{n+(-1)}+(-1)·s_{n+(-2)} )·( Q_{n+(-2)}/Q_{n} )
(15/6) = 2+(1/2) = (5/2)
(15/6) = 6·2+3
(6/3) = 3·2+0
mcd{15,6} = 3
(2/3) = ( 1/(1+(1/2)) )
(2/3) = 3·0+2
(3/2) = 2·1+1
(2/1) = 1·2+0
mcd{2,3} = 1
fer [o] dir
fetxkû [o] diwetxkû
fas [o] diwas
fa [o] diwa
fem [o] diwem
feu [o] diweu
fan [o] diwan
No hay comentarios:
Publicar un comentario