x+y(x) = f(x)+(-1)·f(a) <==> y(a) = (-a)
x+y(x) = f(nx)+(-1)·f(a) <==> y(a/n) = (-1)·(a/n)
x+y(x) = f(x^{n})+(-1)·f(a) <==> y(a^{(1/n)}) = (-1)·a^{(1/n)
x+y(x) = f(e^{x})+(-1)·f(a) <==> y(ln(a)) = (-1)·ln(a)
x·y(x) = ( F(x)/F(a) ) <==> y(a) = (1/a)
x·y(x) = ( F(nx)/F(a) ) <==> y(a/n) = (n/a)
No hay comentarios:
Publicar un comentario