martes, 17 de agosto de 2021

dualogía

x+y(x) = f(x)+(-1)·f(a) <==> y(a) = (-a)

x+y(x) = f(nx)+(-1)·f(a) <==> y(a/n) = (-1)·(a/n)

x+y(x) = f(x^{n})+(-1)·f(a) <==> y(a^{(1/n)}) = (-1)·a^{(1/n)

x+y(x) = f(e^{x})+(-1)·f(a) <==> y(ln(a)) = (-1)·ln(a)


x·y(x) = ( F(x)/F(a) ) <==> y(a) = (1/a)

x·y(x) = ( F(nx)/F(a) ) <==> y(a/n) = (n/a)

No hay comentarios:

Publicar un comentario