{a_{0},a_{1}}-...(n)...-{a_{n+(-1)},a_{n}}
E(n) = n
Transitives
T(n) = (n+(-1))
{a_{i},a_{k}}-{a_{k},a_{j}} = {a_{i},a_{j}}
{a_{0},a_{1}}-{a_{1},a_{2}} = {a_{0},a_{2}} & k = 1
{a_{n+(-2)},a_{n+(-1)}}-{a_{n+(-1)},a_{n}} = {a_{n+(-2)},a_{n}} & k = n+(-1)
Bi-Transitives
B(n) = (n+(-2))
{a_{i},a_{k}}-{a_{k},a_{k+1}}-{a_{k+1},a_{j}} = {a_{i},a_{j}}
{a_{0},a_{1}}-{a_{1},a_{2}}-{a_{2},a_{3}} = {a_{0},a_{3}} & k = 1
{a_{n+(-3)},a_{n+(-2)}}-{a_{n+(-2)},a_{n+(-1)}}-{a_{n+(-1)},a_{n}} = ...
... {a_{n+(-2)},a_{n}} & k = (n+(-2))
No hay comentarios:
Publicar un comentario