f(x) = y+x
g(x) = (-y)+x
cadena per composició:
0 ----> f(0) ---->...(n)...----> (fo...(n)...of)(0)
(-0) ----> g(-0) ---->...(n)...----> (go...(n)...og)(-0)
f(x) = yx
g(x) = (1/y)·x
1 ----> f(1) ---->...(n)...----> (fo...(n)...of)(1)
(1/1) ----> g(1/1) ---->...(n)...----> (go...(n)...og)(1/1)
f(x) = ln(x)
g(x) = e^{x} = exp(x)
1 ----> f(1) ---->...(n)...----> (fo...(n)...of)(exp(...(n)...exp(0)...(n)...))
0 ----> g(0) ---->...(n)...----> (go...(n)...og)(ln(...(n)...ln(1)...(n)...))
f_{n}(x) = n^{k}+x
g_{n}(x) = (-1)·n^{k}+x
0 ----> f_{1}(0) ---->...(n)...----> (f_{n}o...(n)...of_{1})(0)
(-0) ----> g_{1}(-0) ---->...(n)...----> (g_{n}o...(n)...og_{1})(-0)
f_{n}(x) = n^{k}·x
g_{n}(x) = (1/n^{k})·x
1 ----> f_{1}(1) ---->...(n)...----> (f_{n}o...(n)...of_{1})(1)
(1/1) ----> g_{1}(1/1) ---->...(n)...----> (g_{n}o...(n)...og_{1})(1/1)
f(x^{n}) = d_{x}[ x^{n} ]
g(x^{(1/n)}) = d_{x}[ x^{(1/n)} ]
1 ----> f(1) ---->...(n)...----> (fo...(n)...of)(1)
1 ----> g(1) ---->...(n)...----> (go...(n)...og)(1)
f(x^{(-n)}) = d_{x}[ x^{(-n)} ]
g(x^{(1/(-n))}) = d_{x}[ x^{(1/(-n))} ]
1 ----> f(1) ---->...(n)...----> (fo...(n)...of)(1)
1 ----> g(1) ---->...(n)...----> (go...(n)...og)(1)
No hay comentarios:
Publicar un comentario