sábado, 12 de diciembre de 2020

ciclons y anti-ciclons

c_{x} = meridià.

c_{y} = paralel.

c_{x} = 0 <==> hora 12 del mitx-dia.

c_{y} = 0 <==> ( pol para huracà & ecuador para huracà polar ).


Front fred ciclónic:

f(x) = c_{x}+(P/mg)·pi·R^{2}·cos(d_{t}[s(t)]·t)

f(y) = c_{y}+(P/mg)·pi·R^{2}·sin(d_{t}[s(t)]·t)

g(x) = c_{x}+(P/mg)·pi·R^{2}·(-1)·cos(d_{t}[s(t)]·t)

g(y) = c_{y}+(P/mg)·pi·R^{2}·(-1)·sin(d_{t}[s(t)]·t)

Front càlid ciclónic:

f(x) = c_{x}+(P/mg)·pi·R^{2}·(-1)·sin(d_{t}[s(t)]·t)

f(y) = c_{y}+(P/mg)·pi·R^{2}·cos(d_{t}[s(t)]·t)

g(x) = c_{x}+(P/mg)·pi·R^{2}·sin(d_{t}[s(t)]·t)

g(y) = c_{y}+(P/mg)·pi·R^{2}·(-1)·cos(d_{t}[s(t)]·t)


Front fred anti-ciclónic:

f(x) = c_{x}+(P/mg)·pi·R^{2}·cos((-1)·d_{t}[s(t)]·t)

f(y) = c_{y}+(P/mg)·pi·R^{2}·sin((-1)·d_{t}[s(t)]·t)

g(x) = c_{x}+(P/mg)·pi·R^{2}·(-1)·cos((-1)·d_{t}[s(t)]·t)

g(y) = c_{y}+(P/mg)·pi·R^{2}·(-1)·sin((-1)·d_{t}[s(t)]·t)

Front càlid anti-ciclónic:

f(x) = c_{x}+(P/mg)·pi·R^{2}·sin((-1)·d_{t}[s(t)]·t)

f(y) = c_{y}+(P/mg)·pi·R^{2}·(-1)·cos((-1)·d_{t}[s(t)]·t)

g(x) = c_{x}+(P/mg)·pi·R^{2}·(-1)·sin((-1)·d_{t}[s(t)]·t)

g(y) = c_{y}+(P/mg)·pi·R^{2}·cos((-1)·d_{t}[s(t)]·t)


Ciclónic:

front-fred [o] front-càlid = ( c_{x} )^{2}+( c_{y} )^{2} = B^{2}

Anti-Ciclónic:

front-fred [o] front-càlid = ( c_{x} )^{2}+( c_{y} )^{2} = A^{2}

No hay comentarios:

Publicar un comentario