(x+y)^{2} = x^{2}+2xy+y^{2}
Bobines:
E_{1,x} = < E·cos(st),0,0 >
E_{1,y} = < 0,E·sin(st),0 >
E_{2,x} = < E·cos(st),0,0 >
E_{2,y} = < 0,E·sin(st),0 >
d_{t}[E_{1,x}][o]d_{t}[E_{2,x}]+d_{t}[E_{1,y}][o]d_{t}[E_{2,y}] = E·s^{2}
Bobines:
E_{1,x} = < E·cos((-s)t),0,0 >
E_{1,y} = < 0,E·sin((-s)t),0 >
E_{2,x} = < E·cos((-s)t),0,0 >
E_{2,y} = < 0,E·sin((-s)t),0 >
d_{t}[E_{1,x}][o]d_{t}[E_{2,x}]+d_{t}[E_{1,y}][o]d_{t}[E_{2,y}] = E·s^{2}
Bobines:
E_{1,x} = < E·cos(st),0,0 >
E_{1,y} = < 0,E·sin(st),0 >
E_{2,x} = < E·cos((-s)t),0,0 >
E_{2,y} = < 0,E·sin((-s)t),0 >
d_{t}[E_{1,x}][o]d_{t}[E_{2,x}]+d_{t}[E_{1,y}][o]d_{t}[E_{2,y}] = (-1)·E·s^{2}
Bobines:
E_{1,x} = < E·cos((-s)t),0,0 >
E_{1,y} = < 0,E·sin((-s)t),0 >
E_{2,x} = < E·cos(st),0,0 >
E_{2,y} = < 0,E·sin(st),0 >
d_{t}[E_{1,x}][o]d_{t}[E_{2,x}]+d_{t}[E_{1,y}][o]d_{t}[E_{2,y}] = (-1)·E·s^{2}
No hay comentarios:
Publicar un comentario