jueves, 19 de noviembre de 2020

ecuacions de estat

PV = kT·sin(aT)


P = (1/V)·kT·sin(aT)

V = (1/P)·kT·sin(aT)

T = (1/a)·sin-pow[1]( (PV)/k )


d_{V}[P] = (-1)·(P/V)

d_{P}[V] = (-1)·(V/P)


d_{T}[P] = (P/T)+(P·a)·( ( 1/( sin(aT) )^{2} )+(-1) )^{(1/2)}

d_{T}[V] = (V/T)+(V·a)·( ( 1/( sin(aT) )^{2} )+(-1) )^{(1/2)}


d_{P}[T] = (1/a)·(1/P)·( 1/( (1/(aT))+( ( 1/( sin(aT) )^{2} )+(-1) )^{(1/2)} ) )

d_{V}[T] = (1/a)·(1/V)·( 1/( (1/(aT))+( ( 1/( sin(aT) )^{2} )+(-1) )^{(1/2)} ) )


PV = kT·cos(aT)


P = (1/V)·kT·cos(aT)

V = (1/P)·kT·cos(aT)

T = (1/a)·cos-pow[1]( (PV)/k )


d_{V}[P] = (-1)·(P/V)

d_{P}[V] = (-1)·(V/P)


d_{T}[P] = (P/T)+(-1)·(P·a)·( ( 1/( cos(aT) )^{2} )+(-1) )^{(1/2)}

d_{T}[V] = (V/T)+(-1)·(V·a)·( ( 1/( cos(aT) )^{2} )+(-1) )^{(1/2)}


d_{P}[T] = (1/a)·(1/P)·( 1/( (1/(aT))+(-1)·( ( 1/( cos(aT) )^{2} )+(-1) )^{(1/2)} ) )

d_{V}[T] = (1/a)·(1/V)·( 1/( (1/(aT))+(-1)·( ( 1/( cos(aT) )^{2} )+(-1) )^{(1/2)} ) )

No hay comentarios:

Publicar un comentario