jueves, 29 de octubre de 2020

operadores lineales y bilineales

A[ f(x) ] = P(x)·d_{x}[ f(x) ]

A[ f(x)+g(x) ] = A[ f(x) ]+A[ g(x) ]

A[ s·f(x) ] = s·A[ f(x) ]


B[ f(x) ] = Q(x)·int[ f(x) ] d[x]

B[ f(x)+g(x) ] = B[ f(x) ]+B[ g(x) ]

B[ s·f(x) ] = s·B[ f(x) ]


M[ f(x) ] = L(x)·( f(x) )

M[ f(x)+g(x) ] = M[ f(x) ]+M[ g(x) ]

M[ s·f(x) ] = s·M[ f(x) ]


C[ f(x),h(x) ] = P(x)·( d_{x}[ f(x) ]·h(x) )

C[ f(x)+g(x),h(x) ] = C[ f(x),h(x) ]+C[ g(x),h(x) ]

C[ h(x),f(x)+g(x) ] = C[ h(x),f(x) ]+C[ h(x),g(x) ]

C[ s·f(x),h(x) ] = s·C[ f(x),h(x) ]

C[ f(x),s·h(x) ] = s·C[ f(x),h(x) ]


D[ f(x),h(x) ] = Q(x)·( int[ f(x) ] d[x]·h(x) )

D[ f(x)+g(x), h(x) ] = D[ f(x),h(x) ]+D[ g(x),h(x) ]

D[ h(x),f(x)+g(x) ] = D[ h(x),f(x) ]+D[ h(x),f(x) ]

D[ s·f(x),h(x) ] = s·D[ f(x),h(x) ]

D[ f(x),s·h(x) ] = s·D[ f(x),h(x) ]


N[ f(x),h(x) ] = L(x)·( f(x)·h(x) )

N[ f(x)+g(x),h(x) ] = N[ f(x),h(x) ]+N[ g(x),h(x) ]

N[ h(x),f(x)+g(x) ] = N[ h(x),f(x) ]+N[ h(x),g(x) ]

N[ s·f(x),h(x) ] = s·N[ f(x),h(x) ]

N[ f(x),s·h(x) ] = s·N[ f(x),h(x) ]

No hay comentarios:

Publicar un comentario