martes, 11 de agosto de 2020

ecuacions diferencials

y(x) = f(x)·d_{x...x}^{n}[y(x)]

ln[o(n)o]( y(x) ) = ∫ [(1/f(x))] d[x]

y(x) = exp[o(n)o]( ∫ [(1/f(x))] d[x] )


y(x)·d_{x}[y(x)] = f(x)·d_{x...x}^{n}[y(x)]·d_{x...x}^{m}[y(x)]

ln[o( n+(m+(-1)) )o]( y(x)·d_{x}[y(x)] ) = ∫ [(1/f(x))] d[x]

y(x) = ( 2·∫ [ exp[o(n)o]( ∫ [(1/f(x))] d[x] ) ] d[x] )^{(1/2)}


ln[o(n)o]( f(x) ) [o(x)o] ln[o(m)o]( g(x) ) = ln[o(n+m)o]( f(x)·g(x) ) 

( d_{x}[f(x)]/f(x) )·( d_{x}[g(x)]/g(x) ) = ( (d_{x}[f(x)]·d_{x}[g(x)])/(f(x)·g(x)) )

d_{x}[ ln[o(n)o]( x^{n} ) ] = ( 1/x^{n} )

d_{x}[ ln[o(n)o]( e^{nx} ) ] = n^{n}

No hay comentarios:

Publicar un comentario