martes, 14 de abril de 2020

segon valor mitx y zeros de funcions de polinomis de segon grau

f(x) = x(x+(-a))


d_{x}[f(x)] = 2x+(-a)


c = (1/2)(a+1)


x = 0 or x = a


f(x) = x^{2}+(-a)·x+( 0+(-0) )
f(x) = x^{2}+(-a)·x+( a+(-a) )


f(x) = x(x^{n}+(-a))


d_{x}[f(x)] = (n+1)·x^{n}+(-a)


c = (1/(n+1))(a+1)^{(1/n)}


x = 0 or x = a^{(1/n)}


f(x) = x^{(n+1)}+(-a)·x+( 0+(-0) )
f(x) = x^{(n+1)}+(-a)·x+( a^{(1/n)}+(-1)·a^{(1/n)} )


f(x) = (x+(-a))(x+(-b))


d_{x}[f(x)] = 2x+((-a)+(-b))


c = (1/2)( (a+b)+1 )


x = a or x = b


f(x) = x^{2}+((-a)+(-b))·x+ab+( a+(-a) )
f(x) = x^{2}+((-a)+(-b))·x+ab+( b+(-b) )

No hay comentarios:

Publicar un comentario