lunes, 30 de marzo de 2020

corolari del valor mitx

Si ( d_{x}[f(x)] és creishent & d_{x}[f(x)] >] 0 )  ==> ...
... [∀x][ x€(0,1)_{K} ==> ( x·d_{x}[f(x)] ) és creishent ].


sigui 0 < x [< y < 1 ==>
x·d_{x}[f(x)] [< x·d_{y}[f(y)] [< y·d_{y}[f(y)]
x·d_{x}[f(x)] [< y·d_{x}[f(x)] [< y·d_{y}[f(y)]


Si ( f(0) = 0 & f(1) = 0 & d_{x}[f(x)] és creishent & d_{x}[f(x)] >] 0 ) ==> ...
... [∃u][∃v][ 0 < u [< v < 1 & [∀x][ x€[u,v]_{K} ==> f(x) es creishent ] ].


sigui 0 < x [< y < 1 ==>
[∃c][ 0 [< c [< x ] & [∃a][ y [< a [< 1 ]
f(x) = x·d_{x}[f(c)] [< x·d_{x}[f(x)] [< y·d_{y}[f(y)] [< y·d_{x}[f(a)] [< f(y)


f(x) = x·(x+(-1))
d_{x}[f(x)] = 2x+(-1)


(-1)(1/4) = f(1/2) [< f(2/3) = (-1)(1/9)

No hay comentarios:

Publicar un comentario