jueves, 22 de agosto de 2019

equivalencia de cardinals y pars de omega

k^{oo} = k·oo^{k+(-1)}


1^{oo}=1
2^{oo}=2·oo
3^{oo}=3·oo^{2}
oo^{oo}=oo·oo^{oo+(-1)}


k^{oo^{oo}} = k·(oo^{ k·oo^{k+(-1)} + (-1) })
1^{oo^{oo}}=1
2^{oo^{oo}}=2·oo^{2·oo+(-1)}
3^{oo^{oo}}=3·oo^{3·oo^{2}+(-1)}
oo^{oo^{oo}}=oo·(oo^{oo·oo^{oo+(-1)}+(-1)})


f( {n_{1},2^{n_{2}},3^{n_{3}},...} )=n_{1}·n_{2}·n_{3}... = #P(N) = oo^{oo}

No hay comentarios:

Publicar un comentario