Al que te pida dale, si hace algo por ti o te da algo a cambio.
no robarás.
no se puede okupar sin pagar alquiler.
viernes, 6 de marzo de 2020
jueves, 5 de marzo de 2020
operador médico
operador médico constructor asterisco
{1,i,(-1),(-i)}
{k,(-j),(-k),j}
(-j) i k
(-1) 0 1
(-k) (-i) j
{1,i,(-1),(-i)}
{k,(-j),(-k),j}
(-j) i k
(-1) 0 1
(-k) (-i) j
operaciones médicas
operador star-trek-Pável-Checkov
operador constructor
oooo
oooo
operador destructor
oooo
oooo
operador constructor
oooo
oooo
operador destructor
oooo
oooo
operador constructor
oooo
oooo
operador destructor
oooo
oooo
operador constructor
oooo
oooo
operador destructor
oooo
oooo
miércoles, 4 de marzo de 2020
geofísica electro-exponencial
E(x,y,z) = qk·< ( (e^{ln(a)·x}+(-1))/x ) , ( (e^{ln(a)·y}+(-1))/y ) , ( (e^{ln(a)·z}+(-1))/z ) >
E(0,0,0) = qk·< ln(a) , ln(a) , ln(a) >
div[ E(x,y,z) ] = qk·( ...
... ( (e^{ln(a)·x}+(-1))/x )·ln(a)+( ln(a)/x )+(-1)·( (e^{ln(a)·x}+(-1))/x^{2} ) +..
... ( (e^{ln(a)·y}+(-1))/y )·ln(a)+( ln(a)/y )+(-1)·( (e^{ln(a)·y}+(-1))/y^{2} ) +...
... ( (e^{ln(a)·z}+(-1))/z )·ln(a)+( ln(a)/z )+(-1)·( (e^{ln(a)·z}+(-1))/z^{2} ) ...
... )
div[ E(0,0,0) ] = 3qk·( ln(a) )^{2}
E(0,0,0) = qk·< ln(a) , ln(a) , ln(a) >
div[ E(x,y,z) ] = qk·( ...
... ( (e^{ln(a)·x}+(-1))/x )·ln(a)+( ln(a)/x )+(-1)·( (e^{ln(a)·x}+(-1))/x^{2} ) +..
... ( (e^{ln(a)·y}+(-1))/y )·ln(a)+( ln(a)/y )+(-1)·( (e^{ln(a)·y}+(-1))/y^{2} ) +...
... ( (e^{ln(a)·z}+(-1))/z )·ln(a)+( ln(a)/z )+(-1)·( (e^{ln(a)·z}+(-1))/z^{2} ) ...
... )
div[ E(0,0,0) ] = 3qk·( ln(a) )^{2}
criteri de derivades
lim[h-->0][ (h/h)·( f(x+h)+(-1)f(x) )/( g(x+h)+(-1)g(x) ) ] = lim[h-->0][ ( f(x+h) )/( g(x+h) ) ] = ...
... ( f(x)/g(x) ) <==> ( f(x) = 0 & g(x) = 0 )
... ( f(x)/g(x) ) <==> ( f(x) = 0 & g(x) = 0 )
derivada de la exponencial
d_{x}[e^{x}] = lim[h-->0][ (1/h)( e^{x+h}+(-1)·e^{x} ) ]
d_{x}[e^{x}] = e^{x}·lim[h-->0][ (1/h)( e^{h}+(-1) ) ]
d_{x}[e^{x}] = e^{x}·lim[h-->0][ (1/h)( (1+h+(1/2)·h^{2}+...(1/n!)·h^{n}+...)+(-1) ) ]
d_{x}[e^{x}] = e^{x}
d_{x}[a^{x}] = lim[h-->0][ (1/h)( a^{x+h}+(-1)·a^{x} ) ]
d_{x}[a^{x}] = a^{x}·lim[h-->0][ (1/h)( a^{h}+(-1) ) ]
d_{x}[a^{x}] = a^{x}·lim[h-->0][ (1/h)( e^{ln(a)·h}+(-1) ) ]
d_{x}[a^{x}] = a^{x}·lim[h-->0][ (1/h)( (1+(ln(a)·h)+(1/2)·(ln(a)·h)^{2}+...(1/n!)·(ln(a)·h)^{n}+...)+(-1) ) ]
d_{x}[a^{x}] = a^{x}·ln(a)
d_{x}[e^{x}] = e^{x}·lim[h-->0][ (1/h)( e^{h}+(-1) ) ]
d_{x}[e^{x}] = e^{x}·lim[h-->0][ (1/h)( (1+h+(1/2)·h^{2}+...(1/n!)·h^{n}+...)+(-1) ) ]
d_{x}[e^{x}] = e^{x}
d_{x}[a^{x}] = lim[h-->0][ (1/h)( a^{x+h}+(-1)·a^{x} ) ]
d_{x}[a^{x}] = a^{x}·lim[h-->0][ (1/h)( a^{h}+(-1) ) ]
d_{x}[a^{x}] = a^{x}·lim[h-->0][ (1/h)( e^{ln(a)·h}+(-1) ) ]
d_{x}[a^{x}] = a^{x}·lim[h-->0][ (1/h)( (1+(ln(a)·h)+(1/2)·(ln(a)·h)^{2}+...(1/n!)·(ln(a)·h)^{n}+...)+(-1) ) ]
d_{x}[a^{x}] = a^{x}·ln(a)
derivada del logaritme
d_{x}[x] = 1
d_{x}[e^{ln(x)}] = 1
d_{ln(x)}[e^{ln(x)}]·d_{x}[ln(x)] = 1
e^{ln(x)}·d_{x}[ln(x)] = 1
x·d_{x}[ln(x)] = 1
d_{x}[ln(x)] = (1/x)
d_{x}[x+a] = 1
d_{x}[e^{ln(x+a)}] = 1
d_{ln(x+a)}[e^{ln(x+a)}]·d_{x}[ln(x+a)] = 1
e^{ln(x+a)}·d_{x}[ln(x+a)] = 1
(x+a)·d_{x}[ln(x+a)] = 1
d_{x}[ln(x+a)] = ( 1/(x+a) )
d_{x}[x^{n}] = nx^{(n+(-1))}
d_{x}[e^{ln(x^{n})}] = nx^{(n+(-1))}
d_{ln(x^{n})}[e^{ln(x^{n})}]·d_{x}[ln(x^{n})] = nx^{(n+(-1))}
e^{ln(x^{n})}·d_{x}[ln(x^{n})] = nx^{(n+(-1))}
x^{n}·d_{x}[ln(x^{n})] = nx^{(n+(-1))}
d_{x}[ln(x^{n})] = (1/x^{n})·nx^{(n+(-1))}
d_{x}[ln(x^{n})] = (n/x)
d_{x}[e^{ln(x)}] = 1
d_{ln(x)}[e^{ln(x)}]·d_{x}[ln(x)] = 1
e^{ln(x)}·d_{x}[ln(x)] = 1
x·d_{x}[ln(x)] = 1
d_{x}[ln(x)] = (1/x)
d_{x}[x+a] = 1
d_{x}[e^{ln(x+a)}] = 1
d_{ln(x+a)}[e^{ln(x+a)}]·d_{x}[ln(x+a)] = 1
e^{ln(x+a)}·d_{x}[ln(x+a)] = 1
(x+a)·d_{x}[ln(x+a)] = 1
d_{x}[ln(x+a)] = ( 1/(x+a) )
d_{x}[x^{n}] = nx^{(n+(-1))}
d_{x}[e^{ln(x^{n})}] = nx^{(n+(-1))}
d_{ln(x^{n})}[e^{ln(x^{n})}]·d_{x}[ln(x^{n})] = nx^{(n+(-1))}
e^{ln(x^{n})}·d_{x}[ln(x^{n})] = nx^{(n+(-1))}
x^{n}·d_{x}[ln(x^{n})] = nx^{(n+(-1))}
d_{x}[ln(x^{n})] = (1/x^{n})·nx^{(n+(-1))}
d_{x}[ln(x^{n})] = (n/x)
Suscribirse a:
Entradas (Atom)