Principio: [ de Hamilton-Heisenberg ]
Sea H(x,y,z) = f(x)·g(y)·h(z) ==>
ihc·(1/2)·(1/n)·( d_{x}[H(x,y,z)]+d_{y}[H(x,y,z)]+d_{z}[H(x,y,z)] ) = ...
... P(k:x,y,z)·E(x,y,z)·H(x,y,z)
f(x) = e^{(1/3)·( 2/(ihc) )·( int[ P(k:x,y,z) ]d[x] [o(x)o] int[ E(x,y,z) ]d[x] )}
g(y) = e^{(1/3)·( 2/(ihc) )·( int[ P(k:x,y,z) ]d[y] [o(y)o] int[ E(x,y,z) ]d[y] )}
h(z) = e^{(1/3)·( 2/(ihc) )·( int[ P(k:x,y,z) ]d[z] [o(z)o] int[ E(x,y,z) ]d[z] )}
Principio: [ de Hamilton-Srôdinguer ]
ih·(1/2)·(1/n)·d_{t}[H(t)] = P(k:t)·E(t)·H(t)
H(t) = e^{( 2/(ih) )·( int[ P(k:t) ]d[t] [o(t)o] int[ E(t) ]d[t] )}
Principio: [ de LaGrange-Srôdinguer ]
Sea H(x,y,z) = f(x)·g(y)·h(z) ==>
(-1)·h^{2}·(1/(2m))·(1/n)·( d_{x}[H(x,y,z)]^{2}+d_{y}[H(x,y,z)]^{2}+d_{z}[H(x,y,z)]^{2} ) = ...
... P(k:x,y,z)·E(x,y,z)·( H(x,y,z) )^{2}
f(x) = e^{(1/3)^{(1/2)}·( (2m)^{(1/2)}/(ih) )·( ...
... int[ ( P(k:x,y,z) )^{(1/2)} ]d[x] [o(x)o] int[ ( E(x,y,z) )^{(1/2)} ]d[x] )}
g(y) = e^{(1/3)^{(1/2)}·( (2m)^{(1/2)}/(ih) )·( ...
... int[ ( P(k:x,y,z) )^{(1/2)} ]d[y] [o(y)o] int[ ( E(x,y,z) )^{(1/2)} ]d[y] )}
h(z) = e^{(1/3)^{(1/2)}·( (2m)^{(1/2)}/(ih) )·( ...
... int[ ( P(k:x,y,z) )^{(1/2)} ]d[z] [o(z)o] int[ ( E(x,y,z) )^{(1/2)} ]d[z] )}
Principio: [ de LaGrange-Heisenberg ]
(-1)·h^{2}·(1/(2mc^{2}))·(1/n)·d_{t}[H(t)]^{2} = P(k:t)·E(t)·( H(t) )^{2}
H(t) = e^{( ( (2m)^{(1/2)}/(ih) )·c )·( int[ ( P(k:t) )^{(1/2)} ]d[t] [o(t)o] int[ ( E(t) )^{(1/2)} ]d[t] )}
Ley: [ del invariante Lorentz ]
d_{x}[e^{(mc/h)·x}] = e^{(mc/h)·x}·(mc/h)
d_{t}[e^{(c/r)·t}] = e^{(c/r)·t}·(c/r)
Principio: [ de Dirac-Heisenberg ]
Sea H(x,y,z) = f(x)·g(y)·h(z) ==>
( 1/( 1+(-1)·( h/(mc) )·(1/2)·sum[s = 1]-[3][ m_{k}·R_{ssk}^{s} ] ) )·...
... ihc·(1/2)·(1/n)·( d_{x}[H(x,y,z)]+d_{y}[H(x,y,z)]+d_{z}[H(x,y,z)] ) = ...
... P(k:x,y,z)·E(x,y,z)·( H(x,y,z) )^{1+(-1)·[1:1]}
f(x) = ...
... e^{(1/3)·( 2/(ihc) )^{( 1/(1+(-1)·[1:1]) )}·( (-1)·(2mc)/h )^{( (-1)·[1:1]/(1+(-1)·[1:1]) )}·( ...
... int[ ( P(k:x,y,z) )^{( 1/(1+(-1)·[1:1]) )} ]d[x] [o(x)o] int[ ( E(x,y,z) )^{( 1/(1+(-1)·[1:1]) )} ]d[x] )}
g(y) =
... e^{(1/3)·( 2/(ihc) )^{( 1/(1+(-1)·[1:1]) )}·( (-1)·(2mc)/h )^{( (-1)·[1:i]/(1+(-1)·[1:1]) )}·( ...
... int[ ( P(k:x,y,z) )^{( 1/(1+(-1)·[1:1]) )} ]d[y] [o(y)o] int[ ( E(x,y,z) )^{( 1/(1+(-1)·[1:1]) )} ]d[y] )}
h(z) =
... e^{(1/3)·( 2/(ihc) )^{( 1/(1+(-1)·[1:1]) )}·( (-1)·(2mc)/h )^{( (-1)·[1:i]/(1+(-1)·[1:1]) )}·( ...
... int[ ( P(k:x,y,z) )^{( 1/(1+(-1)·[1:1]) )} ]d[z] [o(z)o] int[ ( E(x,y,z) )^{( 1/(1+(-1)·[1:1]) )} ]d[z] )}
Principio: [ de Dirac-Srôdinguer ]
( 1/( 1+(-1)·(r/c)·(1/2)·m_{k}·R_{ttk}^{t} ) )·...
... ih·(1/2)·(1/n)·d_{t}[H(t)] = P(k:t)·E(t)·( H(t) )^{1+(-1)·[1:1]}
H(t) = ...
... e^{( 2/(ih) )^{( 1/(1+(-1)·[1:1]) )}·( (-1)·(2c)/r )^{( (-1)·[1:1]/(1+(-1)·[1:1]) )}·( ...
... int[ ( P(k:t) )^{( 1/(1+(-1)·[1:1]) )} ]d[t] [o(t)o] int[ ( E(t) )^{( 1/(1+(-1)·[1:1]) )} ]d[t] )}
Principio: [ de Klein-Gordon-Srôdinguer ]
Sea H(x,y,z) = f(x)·g(y)·h(z) ==>
( 1/( 1+(-1)·( h/(mc) )^{2}·(1/2)·sum[s = 1]-[3][ m_{ij}·R_{ijs}^{s} ] ) )·...
... (-1)·h^{2}·(1/(2m))·(1/n)·( d_{x}[H(x,y,z)]^{2}+d_{y}[H(x,y,z)]^{2}+d_{z}[H(x,y,z)]^{2} ) = ...
... P(k:x,y,z)·E(x,y,z)·( H(x,y,z) )^{2+(-2)·[1:1]}
f(x) = ...
... e^{(1/3)^{(1/2)}·( (2m)^{(1/2)}/(ih) )^{( 1/(1+(-1)·[1:1]) )}·...
... ( (2mc)/(ih) )^{( (-1)·[1:1]/(1+(-1)·[1:1]) )}·( ...
... int[ ( P(k:x,y,z) )^{( 1/(2+(-2)·[1:1]) )} ]d[x] [o(x)o] int[ ( E(x,y,z) )^{( 1/(2+(-2)·[1:1]) )} ]d[x] )}
g(y) = ...
... e^{(1/3)^{(1/2)}·( (2m)^{(1/2)}/(ih) )^{( 1/(1+(-1)·[1:1]) )}·...
... ( (2mc)/(ih) )^{( (-1)·[1:1]/(1+(-1)·[1:1]) )}·( ...
... int[ ( P(k:x,y,z) )^{( 1/(2+(-2)·[1:1]) )} ]d[y] [o(y)o] int[ ( E(x,y,z) )^{( 1/(2+(-2)·[1:1]) )} ]d[y] )}
h(z) = ...
... e^{(1/3)^{(1/2)}·( (2m)^{(1/2)}/(ih) )^{( 1/(1+(-1)·[1:1]) )}·...
... ( (2mc)/(ih) )^{( (-1)·[1:1]/(1+(-1)·[1:1]) )}·( ...
... int[ ( P(k:x,y,z) )^{( 1/(2+(-2)·[1:1]) )} ]d[z] [o(z)o] int[ ( E(x,y,z) )^{( 1/(2+(-2)·[1:1]) )} ]d[z] )}
Principio: [ de Klein-Gordon-Heisenberg ]
( 1/( 1+(-1)·(r/c)^{2}·(1/2)·m_{ij}·R_{ijt}^{t} ) )·...
... (-1)·h^{2}·(1/(2mc^{2}))·(1/n)·d_{t}[H(t)]^{2} = P(k:t)·E(t)·( H(t) )^{2+(-2)·[1:1]}
H(t) = ...
... e^{( ( (2m)^{(1/2)}/(ih) )·c )^{( 1/(1+(-1)·[1:1]) )}·( (2c)/(ir) )^{( (-1)·[1:1]/(1+(-1)·[1:1]) )}·( ...
... int[ ( P(k:t) )^{( 1/(2+(-2)·[1:1]) )} ]d[t] [o(t)o] int[ ( E(t) )^{( 1/(2+(-2)·[1:1]) )} ]d[t] )}
Ley:
Sea H(x,y,z) = f(x)·g(y)·h(z) ==>
Sea w(x) = sum[k = 0]-[oo][ a_{k}·(1/k!)·x^{k} ] ==>
ihc·(1/2)·(1/n)·( d_{x}[H(x,y,z)]+d_{y}[H(x,y,z)]+d_{z}[H(x,y,z)] ) = ...
... a_{k}·(1/k!)·(ax·ay·az)^{k}·( 1/w(ax·ay·az) )·E(x,y,z)·H(x,y,z)
f(x) = e^{(1/3)·( 2/(ihc) )·( ...
... ax·a_{k}·(1/(k+1)!)·(ax·ay·az)^{k} [o(ax)o] ( ax /o(ax)o/ ( W(ax·ay·az)·( 1/(ay·az) ) ) ) [o(x)o] ...
... (1/a)·int[ E(x,y,z) ]d[x] )}
g(y) = e^{(1/3)·( 2/(ihc) )·( ...
... ay·a_{k}·(1/(k+1)!)·(ax·ay·az)^{k} [o(ay)o] ( ay /o(ay)o/ ( W(ax·ay·az)·( 1/(az·ax) ) ) ) [o(y)o] ...
... (1/a)·int[ E(x,y,z) ]d[y] )}
h(z) = e^{(1/3)·( 2/(ihc) )·( ...
... az·a_{k}·(1/(k+1)!)·(ax·ay·az)^{k} [o(az)o] ( az /o(az)o/ ( W(ax·ay·az)·( 1/(ax·ay) ) ) ) [o(z)o] ...
... (1/a)·int[ E(x,y,z) ]d[z] )}
Ley:
Sea w(x) = sum[k = 0]-[oo][ a_{k}·(1/k!)·x^{k} ] ==>
ih·(1/2)·(1/n)·d_{t}[H(t)] = a_{k}·(1/k!)·(ut)^{k}·( 1/w(ut) )·E(t)·H(t)
H(t) = ...
... e^{( 2/(ih) )·( a_{k}·(1/(k+1)!)·(ut)^{k+1}· [o(ut)o] ( ut /o(ut)o/ W(ut) ) [o(t)o] (1/u)·int[ E(t) ]d[t] )}
Ley:
Sea H(x,y,z) = f(x)·g(y)·h(z) ==>
Sea w(x) = sum[k = 0]-[oo][ a_{k}·(1/k!)·x^{k} ] ==>
(-1)·h^{2}·(1/(2m))·(1/n)·( d_{x}[H(x,y,z)]^{2}+d_{y}[H(x,y,z)]^{2}+d_{z}[H(x,y,z)]^{2} ) = ...
... a_{k}·(1/k!)·(ax·ay·az)^{k}·( 1/w(ax·ay·az) )·E(x,y,z)·( H(x,y,z) )^{2}
f(x) = e^{(1/3)^{(1/2)}·( (2m)^{(1/2)}/(ih) )·( ...
... ( ax·a_{k}·(1/(k+1)!)·(ax·ay·az)^{k}· [o(ax)o] ...
... ( ax /o(ax)o/ W(ax·ay·az)·(1/(ay·az)) ) )^{[o(az)o](1/2)} [o(x)o] ...
... (1/a)·int[ ( E(x,y,z) )^{(1/2)} ]d[x] )}
g(y) = e^{(1/3)^{(1/2)}·( (2m)^{(1/2)}/(ih) )·( ...
... ( ay·a_{k}·(1/(k+1)!)·(ax·ay·az)^{k} [o(ay)o] ...
... ( ay /o(ay)o/ W(ax·ay·az)·(1/(az·ax)) ) )^{[o(ay)o](1/2)} [o(y)o] ...
... (1/a)·int[ ( E(x,y,z) )^{(1/2)} ]d[y] )}
h(z) = e^{(1/3)^{(1/2)}·( (2m)^{(1/2)}/(ih) )·( ...
... ( az·a_{k}·(1/(k+1)!)·(ax·ay·az)^{k} [o(az)o] ...
... ( az /o(az)o/ W(ax·ay·az)·(1/(ax·ay)) ) )^{[o(az)o](1/2)} [o(z)o] ...
... (1/a)·int[ ( E(x,y,z) )^{(1/2)} ]d[z] )}
Ley:
Sea w(x) = sum[k = 0]-[oo][ a_{k}·(1/k!)·x^{k} ] ==>
(-1)·h^{2}·(1/(2mc^{2}))·(1/n)·d_{t}[H(t)]^{2} = a_{k}·(1/k!)·(ut)^{k}·( 1/w(ut) )·E(t)·( H(t) )^{2}
H(t) = ...
... e^{( ( (2m)^{(1/2)}/(ih) )·c )·( ...
... ( a_{k}·(1/(k+1)!)·(ut)^{k+1} [o(ut)o] ( ut /o(ut)o/ W(ut) ) )^{[o(ut)o](1/2)} [o(t)o] ...
... (1/u)·int[ ( E(t) )^{(1/2)} ]d[t] )}
Mecánica de vectores y ondulatoria cuántica clásica:
Principio: [ de la ecuación de Heisenberg ]
Sea E(x,y,z) dependiente de la posición ==>
Sea H(x,y,z) = f(x)·g(y)·h(z) ==>
ihu·(1/n)·grad[ H(x,y,z) ] = P(k:x,y,z)·F(x,y,z)·H(x,y,z)
f(x) = e^{(1/(ihu))·int[ P(k:x,y,z) ]d[x] [o(x)o] int[ F_{x}(x,y,z) ]d[x]}
g(y) = e^{(1/(ihu))·int[ P(k:x,y,z) ]d[y] [o(y)o] int[ F_{y}(x,y,z) ]d[y]}
h(z) = e^{(1/(ihu))·int[ P(k:x,y,z) ]d[z] [o(z)o] int[ F_{z}(x,y,z) ]d[z]}
Principio: [ de la ecuación de Srôdinguer ]
Sea E(t) dependiente del tiempo ==>
(-1)·h^{2}·(1/(2m))·(1/n)·...
... ( d_{xx}^{2}[H(x,y,z,t)]+d_{yy}^{2}[H(x,y,z,t)]+d_{zz}^{2}[H(x,y,z,t)] )+...
... P(k:t)·E(t)·H(x,y,z,t) = ih·(1/n)·d_{t}[H(x,y,z,t)]
H(x,y,z,t) = ...
... e^{ax+ay+az+(1/(ih))·( int[P(k:t)]d[t] [o(t)o] int[ E(t) ]d[t] )+(-3)·(ah)^{2}·(1/(2m))·(1/(ih))·t )}
Ley:
div[ H(x,y,z,0) ] = ( f(ax)+g(ay)+h(az) )·ae^{ax+ay+az}
H(x,y,z,t) = ( ( x || y || z ) || (1/a)·( int[f(ax)]d[ax]+int[g(ay)]d[ay]+int[h(az)]d[az] ) ) [o(x || y || z)o] ...
... e^{ax+ay+az+(1/(ih))·( int[P(k:t)]d[t] [o(t)o] int[ E(t) ]d[t] )+(-3)·(ah)^{2}·(1/(2m))·(1/(ih))·t )}
Principio:
Constructor en el cerebro,
por no creer-se la verdad el otro,
de lo hablado o lo escrito.
Destructor en el cerebro,
por no creer-se la verdad el mismo,
de lo entendido o lo leído.
Principio:
Constructor en el cerebro,
por creer-se la falsedad el mismo,
de lo hablado o lo escrito.
Destructor en el cerebro,
por creer-se la falsedad el otro,
de lo entendido o lo leído.
Ley: [ de constructor ]
No solgar de casa,
no robando la libertad en la propiedad,
no abandonando el váter.
m·d_{tt}^{2}[x] = P·( x^{2}+y^{2} )+(-Q)·(ut) >] 0
No duchando-se,
no robando la intimidad en la propiedad,
abandonando la ducha.
m·d_{tt}^{2}[x] = (-P)·( x^{2}+y^{2} )+Q·(ut) [< 0
Ley: [ de constructor ]
Beber siempre,
no robando la propiedad.
Hay una fuerza en el intestino delgado,
sin propiedad de bebida.
m·d_{tt}^{2}[x] = F+(-Q)·(ut) >] 0
Cagar-se siempre,
no robando la des-propiedad.
Hay una fuerza en el intestino gordo,
sin des-propiedad de mierda.
m·d_{tt}^{2}[y] = (-F)+Q·(ut) [< 0
Ley: [ de destructor ]
Amar al próximo,
no como a ti mismo.
d_{t}[x] = f(x)+g(y)
x(t) = Anti-[ s /o(s)o/ ( F(s)+G(s) ) ]-(t)
h(y) = x
Amar al prójimo,
como a ti mismo.
d_{t}[y] = f(y)+g(x)
y(t) = Anti-[ s /o(s)o/ ( F(s)+G(s) ) ]-(t)
h(x) = y
Anexo:
Puede pagar o cobrar,
con el próximo.
No puede pagar ni cobrar,
con el prójimo.
Ley: [ de destructor ]
Violación en el alma,
cometerás adulterio.
Violencia en el alma,
matarás.
Anexo:
Decir que te violan los hombres,
es más violación en el alma.
Decir que te atacan los hombres,
es más violencia en el alma.
Ley: [ de destructor ]
Creer-se que te han visto el chocho,
deseando la mujer del prójimo.
d_{t}[x] = f(y)+p(x)
x(t) = Anti-[ s /o(s)o/ ( F(s)+P(s) ) ]-(t)
h(y) = x
Creer-se que te han visto la picha,
deseando el hombre del prójimo.
d_{t}[x] = f(y)+q(x)
x(t) = Anti-[ s /o(s)o/ ( F(s)+Q(s) ) ]-(t)
h(y) = x
Ley: [ de destructor ]
Creer que los extraterrestres,
son dioses de las mujeres,
deseando la mujer del prójimo.
d_{t}[x] = f(y)+p(x)
x(t) = Anti-[ s /o(s)o/ ( F(s)+P(s) ) ]-(t)
h(y) = x
Creer que los extraterrestres,
son dioses de los hombres,
deseando el hombre del prójimo.
d_{t}[x] = f(y)+q(x)
x(t) = Anti-[ s /o(s)o/ ( F(s)+Q(s) ) ]-(t)
h(y) = x
Ley: [ de constructor ]
Honrarás al padre y a la madre.
Desearás alguna cosa que le pertenezca al próximo.
Escrive del próximo.
no pudiendo escrivir de fuera de la familia.
d_{t}[x] = f(x)+ix
x(t) = Anti-[ s /o(s)o/ ( F(s)+i·(1/2)·s^{2} ) ]-(t)
f(x) = 0 <==> x(t) = e^{it}
d_{t}[x] = f(x)+(-i)·x
x(t) = Anti-[ s /o(s)o/ ( F(s)+(-i)·(1/2)·s^{2} ) ]-(t)
f(x) = 0 <==> x(t) = e^{(-i)·t}
Habla del próximo,
no pudiendo hablar de fuera de la familia.
d_{t}[x] = f(x)+x
x(t) = Anti-[ s /o(s)o/ ( F(s)+(1/2)·s^{2} ) ]-(t)
f(x) = 0 <==> x(t) = e^{t}
d_{t}[x] = f(x)+(-x)
x(t) = Anti-[ s /o(s)o/ ( F(s)+(-1)·(1/2)·s^{2} ) ]-(t)
f(x) = 0 <==> x(t) = e^{(-t)}
Ley: [ de destructor ]
Des-Honrarás al padre y a la madre.
Desearás alguna cosa que le pertenezca al prójimo.
Escrive del prójimo,
no pudiendo escrivir de dentro de la familia.
d_{t}[x] = f(y)+ix
h(y) = x
x(t) = Anti-[ s /o(s)o/ ( F(s)+i·(1/2)·s^{2} ) ]-(t)
f(y) = 0 <==> x(t) = e^{it}
d_{t}[x] = f(y)+(-i)·x
h(y) = x
x(t) = Anti-[ s /o(s)o/ ( F(s)+(-i)·(1/2)·s^{2} ) ]-(t)
f(y) = 0 <==> x(t) = e^{(-i)·t}
Habla del prójimo,
no pudiendo hablar de dentro de la familia.
d_{t}[x] = f(y)+x
h(y) = x
x(t) = Anti-[ s /o(s)o/ ( F(s)+(1/2)·s^{2} ) ]-(t)
f(y) = 0 <==> x(t) = e^{t}
d_{t}[x] = f(y)+(-x)
h(y) = x
x(t) = Anti-[ s /o(s)o/ ( F(s)+(-1)·(1/2)·s^{2} ) ]-(t)
f(y) = 0 <==> x(t) = e^{(-t)}
Anexo:
Como no te vas a creer,
a alguien que habla de él mismo,
cuando dice verdades,
y se cree a la gente.
Como te vas a creer,
a alguien que habla de otro,
mientras dice falsedades,
y no se cree a la gente.
< Wit ,Wies > [o] < Nos , Nosotros >
< Yut ,Yues > [o] < Vos , Vosotros >
Law: [ of pujjate to the Kingdom ]
Yut the King:
Always stareti-kate respectating,
the Law and the Constitution,
of yur Kingdom?
Wit the King:
Always stareti-kate respectating,
the Law and the Constitution,
of my Kingdom.
Frase:
I speak Stowed-English,
and yut standard-kate olsay.
yu speak Stowed-English,
and wit standard-kate olsay.
Morfosintaxis:
[ [x] is I ]-[ [x] speak [z] , and P([b]) ]-[ [z] is Stowed-English ]
P([b]) <==> [ [b] is yut ]-[ [b] standard-kate olsay ]
[ [y] is yu ]-[ [y] speak [z] , and P([a]) ]-[ [z] is Stowed-English ]
P([a]) <==> [ [a] is wit ]-[ [a] standard-kate olsay ]
Frase:
I speak English,
here cloval-sate like-it.
I not speak English,
shere cloval-sate like-it.
Morfosintaxis:
[ [x] is I ]-[ [x] speak [z] , P([u]) ]-[ [z] is English ]
P([u]) <==> [ [u] is here ]-[ [u] cloval-sate like-it ]
[ [x] is I ]-[ [x] not speak [z] , P([v]) ]-[ [z] is English ]
P([v]) <==> [ [v] is shere ]-[ [v] cloval-sate like-it ]
Frase:
I speak English,
hete americans under-kate like-it,
that hies folow-me.
I not speak English,
shete americans under-kate like-it,
that hies not folow-me.
Morfosintaxis:
[ [x] is I ]-[ [x] speak [z] , P([w]) that A([w]) ]-[ [z] is English ]
P([w]) <==> [A?1? [w] ][ [w] is americans ]-[ [w] under-kate like-it ]
A([w]) <==> [ [w] is hies ]-[ [w] folow-me ]
[ [x] is I ]-[ [x] not speak [z] , Q([w]) that B([w]) ]-[ [z] is English ]
Q([w]) <==> [E?1? [w] ][ [w] is americans ]-[ [w] under-kate like-it ]
B([w]) <==> [ [w] is hies ]-[ [w] not folow-me ]
bin
bined
bining
Present:
ame
its
is
somitch
sowitch
are
Present Perfected:
havere-kate participed
haveremitch participed
haverewitch participed
haveren-kate participed
Pasated Perifrastical:
vare-kate infinitive
varemitch infinitive
varewitch infinitive
varen-kate infinitive
Pasated Perifrastical Perfected:
vare-kate to havere-kate participed
varemitch to havere-kate participed
varewitch to havere-kate participed
varen-kate to havere-kate participed
Imperfected:
stave-kate gerunded
stavemitch gerunded
stavewitch gerunded
staven-kate gerunded
Plusquanperfected:
havie-kate participed
haviemitch participed
haviewitch participed
havien-kate participed
Future:
stareti-kate gerunded
staretimitch gerunded
staretiwitch gerunded
havreti-kate participed
havretimitch participed
havretiwitch participed
Conditional:
staríe-kate gerunded
staríemitch gerunded
staríewitch gerunded
havríe-kate participed
havríemitch participed
havríewitch participed
Subjuntive:
stuviese-kate gerunded
stuviesemitch gerunded
stuviesewitch gerunded
huviese-kate participed
huviesemitch participed
huviesewitch participed
No hay comentarios:
Publicar un comentario