Principio: [ de inducción magnética diferencial ]
d[J(x,t)] = k·(1/r)^{3}·d_{t}[q(t)]·d[x]
Principio: [ de inducción eléctrica diferencial ]
d[E(x,t)] = k·(1/r)^{3}·q(t)·d[x]
Ley:
Si ( d[J(x,t)] = k·(1/r)^{3}·d_{t}[q]·d[x] & d_{tt}^{2}[q] = 0 ) ==> ...
... J(r,t) = 2pi·k·(1/r)^{2}·d_{t}[q] & E(r,t) = 2pi·k·(1/r)^{2}·d_{t}[q]·t
Ley:
Si ( d[J(x,t)] = k·(1/r)^{3}·d_{t}[q]·d[x] & d_{t}[q] = (q/t) ) ==> ...
... J(r,t) = 2pi·k·(1/r)^{2}·(q/t) & E(r,t) = 2pi·k·(1/r)^{2}·q·ln(t)
Ley:
Si ( R^{2}+d^{2} = r^{2} & d[J(x,t)] = 2k·(1/r)^{3}·cos(s)·d_{t}[q]·d[x] & d_{tt}^{2}[q] = 0 ) ==> ...
... J(R,t) = 4pi·Rd·k·(1/r)^{4}·d_{t}[q] & E(R,t) = 4pi·Rd·k·(1/r)^{4}·d_{t}[q]·t
Ley:
Si ( R^{2}+d^{2} = r^{2} & d[J(x,t)] = 2k·(1/r)^{3}·cos(s)·d_{t}[q]·d[x] & d_{t}[q] = (q/t) ) ==> ...
... J(R,t) = 4pi·Rd·k·(1/r)^{4}·(q/t) & E(R,t) = 4pi·Rd·k·(1/r)^{4}·q·ln(t)
Geo-física:
Principio: [ de fuerza de des-inducción magnética = relámpago de nube ]
F(x) = d_{t}[p]·d_{t}[q]·k·( 1/(2pi·x) )·(1/a)
Principio: [ de fuerza de des-inducción eléctrica = relámpago de tierra ]
F(x) = d_{t}[p]·q(t)·k·( 1/(2pi·x) )·(1/v)
Ley:
m·d_{tt}^{2}[x] = d_{t}[p]·d_{t}[q]·k·( 1/(2pi·x) )·(1/a)
[Eu][ E = hu ]
[Eu][ x(t) = int[ Anti-pow[2]-[o(t)o]-ln( ...
... int[ d_{t}[p] ]d[t] [o(t)o]·int[ d_{t}[q] ]d[t] [o(t)o] (k/m)·(1/pi)·(1/a)·u^{2}·t ...
... ) ]d[t] ]
Ley:
m·d_{tt}^{2}[x] = d_{t}[p]·q(t)·k·( 1/(2pi·x) )·(1/v)
[Eu][ E = hu ]
[Eu][ x(t) = int[ Anti-pow[2]-[o(t)o]-ln( ...
... int[ d_{t}[p] ]d[t] [o(t)o]·int[ q(t) ]d[t] [o(t)o] (k/m)·(1/pi)·(1/v)·u^{2}·t ...
... ) ]d[t] ]
Teorema:
y^{n} [o(t)o] ln(y) = (1/t)·x^{n}
y = Anti-pow[n]-[o(t)o]-ln( (1/t)·x^{n} )
Ley: [ para-relámpagos de avión ]
bx = d_{t}[p]·d_{t}[q]·k·( 1/(2pi·x) )·(1/a)
x = ( (1/b)·d_{t}[p]·d_{t}[q]·k·( 1/(2pi) )·(1/a) )^{(1/2)}
Ley:[ para-relámpagos de tierra ]
bx = d_{t}[p]·q(t)·k·( 1/(2pi·x) )·(1/v)
x = ( (1/b)·d_{t}[p]·q(t)·k·( 1/(2pi) )·(1/v) )^{(1/2)}
Principio: [ de tormenta tropical ]
E(x) = k·(P/g)·( sin(ax)/(ax) )
B(x) = k·(P/g)·( (cos(ax)+(-1))/(ax) )
Ley:
E(0) = k·(P/g)
B(0) = 0
Ley:
div[E(x)] = k·(P/g)·a·( ( cos(ax)/(ax) )+(-1)·( sin(ax)/(ax)^{2} ) )
div[B(x)] = k·(P/g)·a·( ( sin(ax)/(ax) )+(-1)·( cos(ax)/(ax)^{2} )+( 1/(ax)^{2} ) )
Ley:
div[E(0)] = 0
div[B(0)] = k·(P/g)·a·(3/2)
Teorema: [ de stolz ]
Si lim[n = oo][ ( (a_{n+1}+(-1)·a_{n})/(b_{n+1}+(-1)·b_{n}) ) ] = l ==> ...
... lim[n = oo][ (a_{n}/b_{n}) ] = l
Demostración:
(a_{1}/b_{n+1})+( (b_{n+1}+(-1)·b_{1})/b_{n+1} )·(l+(-s)) < (a_{n+1}/b_{n+1}) < ...
... ( (b_{n+1}+(-1)·b_{1})/b_{n+1} )·(l+s)+(a_{1}/b_{n+1})
Teorema:
lim[n = oo][ ( (1^{k}+...(n)...+n^{k})/n^{k+1} ) ] = ( 1/(k+1) )
Demostración: [ por Stolz ]
lim[n = oo][ ( (n+1)^{k}/( (k+1)·n^{k}+...(k+1)...+1 ) ) ] = ( 1/(k+1) )
Teorema:
lim[n = oo][ ( 1^{k}+...(n)...+n^{k} )^{(1/n)} ] = 1
Demostración: [ por Stolz ]
lim[n = oo][ e^{( ln(1^{k}+...(n)...+n^{k})/n )} ] = ...
... lim[n = oo][ e^{ln(1^{k}+...(n)...+n^{k}+(n+1)^{k})+(-1)·ln(1^{k}+...(n)...+n^{k})} ] = ...
... lim[n = oo][ ( 1+( (n+1)^{k}/(1^{k}+...(n)...+n^{k}) ) ) ] = ...
... lim[n = oo][ ( 1+(k+1)·( (n+1)^{k}/n^{k+1} ) ) ] = 1
Teorema:
lim[n = oo][ ( (1+(1/n))! )^{(1/n)} ] = 1
Demostración: [ por Stolz ]
lim[n = oo][ e^{( ln((1+(1/n))!)/n )} ] = ...
... lim[n = oo][ e^{( ln(2·...·(1+(1/n))·( 1+(1/(n+1)) ))+(-1)·ln(2·...·(1+(1/n))) )} ] = ...
... lim[n = oo][ ( 1+( 1/(n+1) ) ) ] = 1
Teorema:
lim[n = oo][ ( n^{n}/n! )^{(1/n)} ] = e
Demostración: [ por Stolz ]
lim[n = oo][ e^{( ln(n^{n}/n!)/n )} ] = ...
... lim[n = oo][ e^{( ln( ((n+1)^{n+1}·n!)/((n+1)!·n^{n}) )} ] = ...
... lim[n = oo][ ( 1+(1/n) )^{n} ] = e
Se vaitxnatzi-ten-dut-za-tek a extingitzi-ten-dut-zare-dut la gentotzak,
que no creurtu-ten-dut-za-tek en infiel-koaks,
perque no tinketzen-ten-dut-zen-tek següentotzok.
No se vaitxnatzi-ten-dut-za-tek a extingitzi-ten-dut-zare-dut la gentotzak,
que creurtu-ten-dut-za-tek en infiel-koaks,
perque tinketzen-ten-dut-zen-tek següentotzok.
És-de-tek una merdotzak,
no tinketzen-ten-dut-zare-dut següentotzok,
perque te morketzen-ten-dut-zes-tek para semper-nek.
No és-de-tek una merdotzak,
tinketzen-ten-dut-zare-dut següentotzok,
perque no te morketzen-ten-dut-zes-tek para semper-nek.
Ley: [ de colchoneta elástica ]
Si ( R^{2}+d^{2} = r^{2} & m·d_{tt}^{2}[d] = (-p)·k·4pi·Rd·(1/r)^{4}·q ) ==>
d(t) = he^{(1/r)^{2}·(4pi)^{(1/2)}·( (pqk·R)/m )^{(1/2)}·it}
Ley: [ de colchoneta de bombero ]
Si ( R^{2}+d^{2} = r^{2} & m·d_{tt}^{2}[d] = int[ (-p)·k·4pi·Rd·(1/r)^{4}·d_{t}[q] ]d[t] ) ==>
d(t) = he^{(1/r)^{(4/3)}·(4pi)^{(1/3)}·( (pk·R)/m )^{(1/3)}·d_{t}[q]^{(1/3)}·(-t)}
Ley: [ de váter ]
m·d_{tt}^{2}[z] = P·( x^{2}+y^{2} )
z(t) = (1/m)·P·( x^{2}+y^{2} )·(1/2)·t^{2}
Ley: [ de escobilla del váter ]
m·d_{tt}^{2}[z]+kz = P·( x^{2}+y^{2} )
z(t) = he^{(k/m)^{(1/2)}·it}+(1/k)·P·( x^{2}+y^{2} )
Ley: [ de ducha ]
m·d_{tt}^{2}[z] = (-P)·( u^{2}+v^{2} )
z(t) = (1/m)·(-P)·( u^{2}+v^{2} )·(1/2)·t^{2}
Ley: [ de esponja de ducha ]
m·d_{tt}^{2}[z]+kz = (-P)·( u^{2}+v^{2} )
z(t) = he^{(k/m)^{(1/2)}·it}+(1/k)·(-P)·( u^{2}+v^{2} )
Ley: [ de pica de manos ]
m·d_{tt}^{2}[z] = P·( x^{2}+y^{2} )+(-P)·( u^{2}+v^{2} )
z(t) = (1/m)·( P·( x^{2}+y^{2} )+(-P)·( u^{2}+v^{2} ) )·(1/2)·t^{2}
Ley: [ de eyector de jabón de manos ]
m·d_{tt}^{2}[z]+kz = P·( x^{2}+y^{2} )+(-P)·( u^{2}+v^{2} )
z(t) = he^{(k/m)^{(1/2)}·it}+(1/k)·( P·( x^{2}+y^{2} )+(-P)·( u^{2}+v^{2} ) )
Ley: [ de insecticida ]
m·d_{tt}^{2}[z] = a·( |x|+|y| )
z(t) = (1/m)·a·( |x|+|y| )·(1/2)·t^{2}
Ley: [ de limpiador de espray ]
m·d_{tt}^{2}[z]+kz = a·( |x|+|y| )
z(t) = he^{(k/m)^{(1/2)}·it}+(1/k)·a·( |x|+|y| )
Ley: [ de desodorante ]
m·d_{tt}^{2}[z] = (-a)·( |x|+|y| )
z(t) = (1/m)·(-a)·( |x|+|y| )·(1/2)·t^{2}
Ley: [ de desodorante de bola ]
m·d_{tt}^{2}[z]+kz = (-a)·( |x|+|y| )
z(t) = he^{(k/m)^{(1/2)}·it}+(1/k)·(-a)·( |x|+|y| )
Ley: [ de limpiador azul de váter ]
m·d_{tt}^{2}[z]= a·( |x|+|y| )+P·( x^{2}+y^{2} )
z(t) = (1/m)·( a·( |x|+|y| )+P·( x^{2}+y^{2} ) )·(1/2)·t^{2}
Ley: [ de ambientador de váter ]
m·d_{tt}^{2}[z]+kz = a·( |x|+|y| )+P·( x^{2}+y^{2} )
z(t) = he^{(k/m)^{(1/2)}·it}+(1/k)·( a·( |x|+|y| )+P·( x^{2}+y^{2} ) )
Ley: [ no cometiendo adulterio ]
z(x) = < (1/n),2e^{ix},2e^{(-1)·ix},(n/4) > es un placer
Si n >] 5 ==> Se hace el SIDA en ser: (n/4) > 1
Ley: [ cometiendo adulterio ]
z(x) = < (-n),2e^{ix},2e^{(-1)·ix},n+(-4)·cos(x) > es un dolor
Si n >] 4 ==> Se hace el SIDA en ser: [Ax][ x € [0,(pi/2)]_{R} ==> n+(-4)·cos(x) >] 0 ]
En el Paraíso se tienen 72 mujeres de las cuales 20 son vírgenes:
En el Paraíso se tienen 9 hombres de los cuales 5 son vírgenes:
( 1/(5+4) )+( (4+4)/(5+4) ) = (1/9)+(8/9) = (8/72)+(8/9) = 1
( 1/(9+(-4)) )+( (8+(-4))/(9+(-4)) ) = (1/5)+(4/5) = (4/20)+(4/5) = 1
Mofosintaxis:
el [o] la <==> [A$1$ [x] ][ [x] es nombre ]
un [o] una <==> [E$1$ [x] ][ [x] es nombre ]
los [o] las <==> [A$...$ [x] ][ [x] es nombre ]
unos [o] unas <==> [E$...$ [x] ][ [x] es nombre ]
los n [o] las n <==> [A$n$ [x] ][ [x] es nombre ]
unos n [o] unas n <==> [E$n$ [x] ][ [x] es nombre ]
el primer [o] la primera <==> [A$1$1$ [x] ][ [x] es nombre ]
un primer [o] una primera <==> [E$1$1$ [x] ][ [x] es nombre ]
los primeros [o] las primeras <==> [A$...$1$ [x] ][ [x] es nombre ]
unos primeros [o] unas primeras <==> [E$...$1$ [x] ][ [x] es nombre ]
el n-zh [o] la n-zh <==> [A$1$n$ [x] ][ [x] es nombre ]
un n-zh [o] una n-zh <==> [E$1$n$ [x] ][ [x] es nombre ]
los n-zh [o] las n-zh <==> [A$...$n$ [x] ][ [x] es nombre ]
unos n-zh [o] unas n-zh <==> [E$...$n$ [x] ][ [x] es nombre ]
Euskera:
Parlatzi-ten-dut-zû-tek aqueteshek parlatzi-koak,
de askatatsuna-tat-koashek.
Astur-Cántabro:
Parlatzi-ten-dush-kû-tek aqueteshek parlatzi-koaikek,
de askatatsorum-tat-koashek.
Americanek:
Ye parle ye-de-mek celuiçí-pleshek idiomotzak de libertatsunek.
Parlû-tek celuiçí-pleshek idiomotzak de libertatsunek.
Parleshkû-tek celuiçí-pleshek idiomotzak de libertatsunek.
Parletxkû-tek celuiçí-pleshek idiomotzak de libertatsunek.
La meva trancotzak está-de-tek ur-duri-blek.
La meva trancotzak está-de-tek ur-blandi-blek.
La meva trancot-çuá está-de-puá ur-duri-druá.
La meva trancot-çuá está-de-puá ur-blandi-druá.
Parlatzi-ten-dut-zû-tek algunoskotzak gauza-koak de Euskera.
No parlatzi-ten-dut-zû-tek ningunoskotzak gauza-koak de Euskera.
Reino del sur de Gondor
Parlû
Reino del norte de Anor:
Parlû-tek
Rohan:
Parlû-puá
Arte:
[At][ t >] 0 ==> [En][ sum[k = 1]-[n][ ( k^{(-1)+t} ) ] = O( (n+1)^{t} ) ] ]
[At][ t >] 0 ==> [En][ sum[k = 1]-[n+1][ ( (1/(k+1))^{1+t} ) ] = O( (1/n)^{t} ) ] ]
Exposición:
n = 1
f(k) = n
k^{(-1)+t} = ( f(k) )^{(-1)+t} = n^{(-1)+t}
sum[k = 1]-[n][ ( k^{(-1)+t} ) ] = sum[k = 1]-[n][ ( n^{(-1)+t} ) ] = n·n^{(-1)+t} = ...
... n^{1+(-1)+t} = n^{0+t} = n^{t}
0 [< ( n/(n+1) )^{t} = ( n^{t}/(n+1)^{t} ) = ( n/(n+1) )^{t} < 1
Arte: [ de Vinogradov ]
[At][ t >] 0 ==> [En][ sum[k = 1]-[n][ ( k^{(-1)+t} ) ] = O( ( e^{n} )^{( (p+1)/p )·t} ) ] ]
[At][ t >] 0 ==> [En][ sum[k = 1]-[n+1][ ( ( 1/(k+1) )^{1+t} ) ] = O( ( 1/ln(n+1) )^{( p/(p+1) )·t} ) ] ]
Exposición:
n = 1
f(k) = n
n^{( p/(p+1) )} [< n [< e^{n}
(n+1)^{( (p+1)/p )} >] n+1 >] ln(n+1)
Arte:
[At][ t >] 0 ==> ...
... [En][ sum[k = 1]-[n+1][ ( ( (k+1)·ln(k+1) )^{(-1)+t} ) ] = O( (n+1)^{2t}·( 1/ln(n+1) ) ) ] ]
[At][ t >] 0 ==> ...
... [En][ sum[k = 1]-[n][ ( ( 1/(k·e^{k}) )^{1+t} ) ] = O( (1/n)^{2t}·e^{n} ) ] ]
Exposición:
n = 1
f(k) = n
No hay comentarios:
Publicar un comentario