martes, 16 de agosto de 2022

polinomis

( x [+(3k)+] y )^{2} = x^{2}+y^{2}

( x [+(3k)+] (-y) )^{2} = x^{2}+(-y)^{2}

( x [+(3k)+] y )^{3} = x^{3}+x^{2}y+xy^{2}+y^{3}

( x [+(3k)+] (-y) )^{3} = x^{3}+(-1)·x^{2}y+(-1)·xy^{2}+(-y)^{3}


x^{3}+bx^{2}+cx+d = 0

x = ( y [+(3k)+] (-b) )

( y^{3}+(-1)·by^{2}+(-1)·b^{2}y+(-1)·b^{3} )+( by^{2}+b^{3} )+( cy+(-1)·bc )+d = 0

y = ( x [+(3k)+] b )


h^{3}+ph+q = 0

p = (-1)·b^{2}+c

q = (-1)·bc+d

x^{3}+bx^{2}+cx+d = ...

... ( x+(b+(-h)) )·( ( x [+(3k)+] b )^{2}+h·(x+b)+(p+h^{2}) )


x^{3}+y^{3} = p

x = ( u [+(3k)+] a ) & y = ( u [+(3k)+] (-a) )

2u^{3} = p

u = ( (1/2)·p )^{(1/3)}


y^{3}+py+q = ...

... y^{3}+(-1)·y^{4}+( y^{2}+iq^{(1/2)} )·( y^{2}+(-i)·q^{(1/2)})+py

y = ( z [+(4k)+] 1 )

(2z^{3}+1)+(-1)·( z^{4}+2z^{3}+2z^{2}+1 )+...

... ( z^{4}+2z^{2}+1 )+pz+p+q = 0

pz+( p+q+1 ) = 0

h+( (1/2)·( ph+(p+q+1) ) )^{(1/3)} = 0

2·(z+(-h))·( z^{2}+hz+h^{2} ) = 2z^{3}+pz+(p+q+1)

2z^{3}+pz+(p+q+1) = 2z^{3}+(-2)·h^{3} = 0

( x [+(4k)+] y )^{2} = x^{2}+y^{2}

( x [+(4k)+] (-y) )^{2} = x^{2}+(-y)^{2}

( ( x [+(4k)+] y )^{3}+(-z) ) = (y+(-z))·x^{3}+x^{3}+y^{3}

( ( x [+(4k)+] (-y) )^{3}+z ) = (z+(-y))·x^{3}+x^{3}+(-y)^{3}

2·(z^{3}+(1/2)) = y^{3}+(-2)·

2z^{3}+pz+(p+q+1) = 0

z = ...

... ( ...

... (1/4)·( (p+q+1) )+...

... ( (p+q+1)^{2}+(-2)·(-1)^{3}·(1/27)·p^{3} )^{(1/2)} ...

... )^{(1/3)}+...

... ( ...

... (1/4)·( (p+q+1) )+...

... (-1)·( (p+q+1)^{2}+(-2)·(-1)^{3}·(1/27)·p^{3} )^{(1/2)} ...

... )^{(1/3)}

| 2 | 0 | p | p+q+1

| 2 | 2h | p+2h^{2} | (p+q+1)+ph+2h^{3} = 0

2z^{3}+pz+(p+q+1) = ...

... (z+(-h))·( 2z^{2}+2h·z+(p+2h^{2}) )


( x [+(mk)+] 1 )^{m} = x^{m}+2x^{m+(-1)}+...+2x+1

( x [+(mk)+] 1 )^{m+(-1)} = 2x^{m+(-1)}+1

( 2·( y [+(mk)+] (-1) )^{m+(-1)}+1 ) = y^{m+(-1)}+2·(-1)^{m+(-1)}

No hay comentarios:

Publicar un comentario