a_{n+1} = ( c+(-1)·a_{n} )^{(1/m)}
lim[ a_{n} ] = c^{1/(1+[m+(-1)])}
c^{m/(1+[m+(-1)])}+c^{1/(1+[m+(-1)])} = ...
... c^{1/(1+[m+(-1)])}·c^{[m+(-1)]/(1+[m+(-1)])} = c
Teorema:
Los que cierran a los fieles en Sant Rafael rezando al mal no son católicos
porque Sant Rafael es un hospital católico.
Demostración por absurdo:
Los que cierran a los fieles en Sant Rafael rezando al mal son católicos
aunque quizás Sant Rafael es un hospital católicos.
d_{x}[y] = (x^{n+(-1)}y)/(x^{n}+y^{n})
y = xu
u+xd_{x}[u] = u/(1+u^{n})
xd_{x}[u] = (-1)·u^{n+1}·( 1/(1+u^{n}) )
(-1)·( u^{(-n)+(-1)}+(1/u))·d_{x}[u] = (1/x)
(1/n)·u^{(-n)} = ln(y)
(1/n)·x^{n} = y^{n}·ln(y)
y(x) = anti-ln-pow[n]( (1/n)·x^{n} )
d_{x}[y] = (y/x)+f(x)
y = xu
u+xd_{x}[u] = (u+f(x))
d_{x}[u] = (f(x)/x)
u = ln(x) [o(x)o] int[ f(x) ] d[x]
y(x) = x·( ln(x) [o(x)o] int[ f(x) ] d[x] )
d_{x}[y] = (y/x)^{n}
y = xu
u+xd_{x}[u] = u^{n}
xd_{x}[u] = u·( (u^{n}/u)+(-1) )
xd_{x}[u] = u^{( 1+]n+(-1)[ )}
u^{(-1)+(-1)·]n+(-1)[}d_{x}[u] = (1/x)
( 1/(-1)·]n+(-1)[ )·u^{(-1)·]n+(-1)[} = ln(x)
y(x) = x·( (-1)·]n+(-1)[·ln(x) )^{( (-1)/]n+(-1)[ )}
y(x) = x·( (-1)·ln(x^{]n+(-1)[}) )^{( (-1)/]n+(-1)[ )}
( (-1)·ln(x^{]n+(-1)[}) )^{( (-1)/]n+(-1)[ )}+...
... ( (-1)·ln(x^{]n+(-1)[}) )^{( (-1)/]n+(-1)[ )+(-1)} = ...
( (-1)·ln(x^{]n+(-1)[}) )^{( (-1)/]n+(-1)[ )}·...
... (1+( (-1)·ln(x^{]n+(-1)[}) )^{( (-1)·( ]n+(-1)[/]n+(-1)[ ) )}) = ...
( (-1)·ln(x^{]n+(-1)[}) )^{( (-1)/]n+(-1)[ )}·...
... (1+( ( (-1)·ln(x^{]n+(-1)[}) )^{( (-1)/]n+(-1)[ )} )^{]n+(-1)[} = ...
( (-1)·ln(x^{]n+(-1)[}) )^{( (-1)/]n+(-1)[ )}·...
... ( ( (-1)·ln(x^{]n+(-1)[}) )^{( (-1)/]n+(-1)[ )} )^{n+(-1)} = ...
... ( ( (-1)·ln(x^{]n+(-1)[}) )^{( (-n)/]n+(-1)[ )} )
Corol·lari:
d_{x}[y] = (-1)·(y/x)^{n}
y(x) = x·( ln(x^{[n+(-1)]}) )^{( (-1)/[n+(-1)] )}
x^{5}+5x = c
x = c^{1/(1+[...(5)...[4]...(5)...])}
c^{1/(1+[...(5)...[4]...(5)...])}·( c^{4/(1+[...(5)...[4]...(5)...])}+5 ) = c
x^{4}+4x = c
x = c^{1/(1+[...(4)...[3]...(4)...])}
c^{1/(1+[...(4)...[3]...(4)...])}·( c^{3/(1+[...(4)...[3]...(4)...])}+4 ) = c
Si tengo condenación,
no estoy en Cygnus-Kepler,
porque tengo que desear lo buey del prójimo para tener.
Si no tengo condenación,
estoy en Cygnus-Kepler,
porque puedo amar al próximo como a mi mismo para tener.
Le he rezado al mal llevar a los dioses del caos de khorne a zhentch,
a raza suya de nurgle,
a pagar condenación en zhentch.
Si eres blanco te vuelves negro,
y estás en un planeta de blancos pagando condenación.
Le he rezado al mal llevar a los dioses del caos de zhentch a khorne,
a raza suya de slanesh,
a pagar condenación en khorne.
Si eres negro te vuelves blanco,
y estás en un planeta de negros pagando condenación.
teorema:
d_{x}[y] = a·(y/x)^{n}
y(x) = ...
... x·( (-a)·ln( x^{]...(1/a)...]n+(-1)[...(1/a)...[} ) )^{( (-1)/]...(1/a)...]n+(-1)[...(1/a)...[ )}
d_{x}[y] = (-a)·(y/x)^{n}
y(x) = ...
... x·( a·ln( x^{[...(1/a)...[n+(-1)]...(1/a)...]} ) )^{( (-1)/[...(1/a)...[n+(-1)]...(1/a)...] )}
x^{n}+1 = c
x^{[n]} = c^{1}
x^{][n][} = c^{]1[}
x^{n} = c^{]1[}
x^{n} = c+(-1)
d_{x}[y] = f(x)·(y/x)^{( n/(n+1) )}+(y/x)
y = xu^{n+1}
x·(n+1)·u^{n}d_{x}[u] = f(x)·u^{n}
(n+1)d_{x}[u] = (f(x)/x)
(n+1)·u = ln(x) [o(x)o] int[f(x)]d[x]
y(x) = x·( (1/(n+1))·ln(x) [o(x)o] int[f(x)]d[x] )^{n+1}
d_{x}[y] = f(x)·(y/x)
y = xu^{n+1}
(n+1)·(1/u)·d_{x}[u] = (f(x)+(-1))·(1/x)
ln(u) = ( 1/(n+1) )·int[f(x)+(-1)]d[x] [o(x)o] ln(x)
y(x) = x·e^{int[f(x)+(-1)]d[x] [o(x)o] ln(x)}
No hay comentarios:
Publicar un comentario