sábado, 14 de agosto de 2021

tecnología industrial imperial y integrals imperials

d_{x}^{(1/m)}[qgx] = ...

... ( qg )^{(1/m)}·d_{x}^{(1/m)}[x] = ( qg )^{(1/m)}

d_{y}^{(1/m)}[(1/2)·ay^{2}] = ...

... (1/2)^{(1/m)}·a^{(1/m)}·d_{y}^{(1/m)}[y^{2}] = ( ay )^{(1/m)}

d_{z}^{(1/m)}[(1/3)·bz^{3}] = ...

... (1/3)^{(1/m)}·b^{(1/m)}·d_{z}^{(1/m)}[z^{3}] = ( bz^{2} )^{(1/m)}


int[ ( ax+b )^{n} ] d^{(1/m)}[x] = ...

... (1/(n·m+1))·( ax+b )^{(n·m+1)} [o(x)o] ( 1/a )·x

d_{x}^{(1/m)}[(1/(n·m+1))·( ax+b )^{(n·m+1)}] = ...

... (1/(n·m+1))^{(1/m)}·d_{x}^{(1/m)}[( ax+b )^{(n·m+1)}] = ( ax+b )^{n}·a^{(1/m)}


d_{x}^{(1/m)}[x^{(n·m+1)}] = (n·m+1)^{(1/m)}·x^{n}


int[ ( ax^{2}+bx+c )^{n} ] d^{(1/m)}[x] = ...

... (1/(n·m+1))·( ax^{2}+bx+c )^{(n·m+1)} [o(x)o] ln(2ax+b) [o(x)o] ( 1/(2a) )·x

d_{x}^{(1/m)}[ln(2ax+b)] = ( 1/(2ax+b) )^{1/m}·(2a)^{((1/m)}

No hay comentarios:

Publicar un comentario