(1/pi)·int[ x^{2}·cos(kx) ] d[x] = ...
(1/pi)·(1/k)·int[ x^{2}·cos(kx)·k ] d[x] = ...
(1/pi)·(1/k)·( x^{2}sin(kx)+(-1)·int[ 2x·sin(kx) ] d[x] ) =
pi^{2} = (pi^{2}/3)+4·sum[ (1/k^{2}) ]
(1/pi)·int[ (-x)·sin(kx) ] d[x] = ...
(1/pi)·(1/k)·x·cos(kx)+(-1)·int[ cos(kx) ] d[x]
pi = (pi/2)+sum[ (1/k) ]
sum[ (1/k) ] = (1/2)·pi
0 < x < pi
(1/pi)·( int[ (-x)^{3}·sin(kx) ] d[x]+(-2)·(1/k^{2})·int[ (-x)·sin(kx) ] d[x] ) = ...
(1/k^{2})·int[ 3·(-x)^{2}·cos(kx)·k ] d[x] = ...
... (1/k^{2})·( 3·(-x)^{2}·(-1)·sin(kx)+(-1)·int[ 6x·sin(kx) ] d[x] )
pi^{3} = (pi^{3}/4)+(pi^{3}/2)+5·sum[ (1/k^{3}) ]
sum[ (1/k^{3}) ] = (pi^{3}/20)
No hay comentarios:
Publicar un comentario