Aprended destructor matemático que neutraliza el constructor matemático,
y matan los símbolos de condenación a los dioses del mal.
Para que te jodan los esclavos infieles de un dios,
te tiene que vencer el destructor con constructor.
totalmente ordenado: ( x [< y || x >] y )
teorema constructor:
Si ( x < y & y < z ) ==> x < z
x < y < z
x < z
teorema destructor:
Si ( x < y & y < z ) ==> z [< x
¬( x < z )
z [< x
teorema constructor:
Si ( x [< y & y [< z ) ==> x [< z
x [< y [< z
x [< z
teorema destructor:
Si ( x [< y & y [< z ) ==> z < x
¬( x [< z )
z < x
teorema constructor:
Si ( x > y & y > z ) ==> x > z
x > y > z
x > z
teorema destructor:
Si ( x > y & y > z ) ==> z >] x
¬( x > z )
z >] x
teorema constructor:
Si ( x >] y & y >] z ) ==> x >] z
x >] y >] z
x >] z
teorema destructor:
Si ( x >] y & y >] z ) ==> z > x
¬( x >] z )
z > x
teorema constructor:
Si ( x [< y & y < z ) ==> x < z
( x < y || x = y ) & y < z
x < z || x < z
x < z
teorema destructor:
Si ( x [< y & y < z ) ==> z [< x
¬( x < z )
z [< x
teorema constructor:
Si ( x < y & y [< z ) ==> x < z
x < y & ( y < z || y = z )
x < z || x < z
x < z
teorema destructor:
Si ( x < y & y [< z ) ==> z [< x
¬( x < z )
z [< x
teorema constructor:
Si ( x >] y & y > z ) ==> x > z
( x > y || x = y ) & y > z
x > z || x > z
x > z
teorema destructor:
Si ( x >] y & y > z ) ==> z >] x
¬( x > z )
z >] x
teorema constructor:
Si ( x > y & y >] z ) ==> x > z
x > y & ( y > z || y = z )
x > z || x > z
x > z
teorema destructor:
Si ( x > y & y >] z ) ==> z >] x
¬( x > z )
z >] x
Si ( A [<< B & B [<< C ) ==> A [ \ ] C != 0
¬( A [<< C )
¬[Ax][ x€A ==> x€C ]
[Ex][ x€A & ¬( x€C ) ]
[Ex][ x€ A [ \ ] C ]
A [ \ ] C != 0 [ [Ax][ ¬( x€A ) ] <==> A = 0 ]
Si ( A >>] B & B >>] C ) ==> A [ / ] C != 0
¬( A >>] C )
¬[Ax][ x€A <== x€C ]
[Ex][ ¬( x€A ) & x€C ]
[Ex][ x€ A [ / ] C ]
A [ / ] C != 0 [ [Ax][ ¬( x€A ) ] <==> A = 0 ]
teorema constructor:
A [ |o| ] B = 0 <==> A = B
A [ |o| ] B != 0
[Ex][ x€ A [ |o| ] B ]
[Ex][ x€ A |o| x€B ]
[Ex][ ¬( x€ A <==> x€B ) ]
¬[Ax][ x€ A <==> x€B ]
A != B
teorema destructor:
A [ |o| ] B != 0 <==> A = B
A [ |o| ] B != 0
[Ex][ x€ A [ |o| ] B ]
[Ex][ x€A |o| x€B ]
¬( ¬[Ax][ ¬( x€A |o| x€B ) ] )
[Ax][ ¬( x€A |o| x€B ) ]
[Ax][ x€A <==> x€B ]
A = B
teorema constructor:
A [ |o| ] B = 0 <==> A = B
A [ |o| ] B = 0
[Ax][ ¬( x€ A [ |o| ] B ) ]
[Ax][ ¬( x€ A |o| x€B ) ]
[Ax][ x€ A <==> x€B ]
A = B
teorema destructor:
A [ |o| ] B = 0 <==> A != B
A [ |o| ] B = 0
[Ax][ ¬( x€ A [ |o| ] B ) ]
¬( ¬[Ex][ x€A [ |o| ] B ] )
[Ex][ x€A |o| x€B ] )
¬¬[Ex][ x€A |o| x€B ]
¬[Ax][ ¬( x€A |o| x€B ) ]
¬[Ax][ x€A <==> x€B ]
A != B
No hay comentarios:
Publicar un comentario