(-s) < (a_{n+1}+(-1)·a_{n})/(b_{n+1}+(-1)·b_{n})+(-l) < s
(-s) < ( (a_{n+1}+(-1)·a_{n})/b_{n+1} )+(-l)·( (b_{n+1}+(-1)·b_{n})/b_{n+1} ) < s
l = (n+1)
(a_{n+1}/b_{n+1}) = lim[ (1+...(n)...+n+(n+1))/(n+1) ] = (1/2)·(n+2)
(a_{n}/b_{n+1}) = lim[ (1+...(n)...+n)/(n+1) ] = (n/2)
l = (n+1)^{2}
(a_{n+1}/b_{n+1}) = lim[ (1^{2}+...(n)...+n^{2}+(n+1)^{2})/(n+1) ] = ((n/6)+(1/3))·(2n+3)
(a_{n}/b_{n+1}) = lim[ (1^{2}+...(n)...+n^{2})/(n+1) ] = (n/6)·(2n+1)
No hay comentarios:
Publicar un comentario