domingo, 13 de septiembre de 2020

ecuacions diferencials

d_{x}[y] = ( (x+(-y))/(x+y) )

y = ux

u+x·d_{x}[u] = (1+(-u))/(1+u)

(1+u)/((-1)u^{2}+(-2)u+1)·d_{x}[u] = (1/x)

(-1)·(1/2)·ln( (-1)u^{2}+(-2)u+1 ) = ln(x)

(-1)u^{2}+(-2)u+1 = (1/x^{2})

(-1)y^{2}+(-2)yx+x^{2} = 1

y^{2}+2yx+(1+(-1)·x^{2}) = 0

y = (1/2)( (-2)x+(8x^{2}+(-4))^{(1/2)} )

y = (-x)+(2x^{2}+(-1))^{(1/2)}


d_{x}[ (-x)+(2x^{2}+(-1))^{(1/2)} ] = (-1)+(2x^{2}+(-1))^{(-1)(1/2)}·(2x)


d_{x}[y] = ( (x+y)/(x+(-z)) )

d_{x}[z] = ( (x+z)/(x+(-y)) )

y = x+(2x^{2}+(-1))^{(1/2)}

z = x+(-1)·(2x^{2}+(-1))^{(1/2)}

No hay comentarios:

Publicar un comentario