sábado, 27 de abril de 2024

física-mecánica-teórica y geofísica-atmosférica-y-magmática y física-de-campos-potenciales y física-de-operadores

Ley:

d_{t}[x] = v·( ( (ax)·(vat)^{n+(-1)} )/( (vat)^{n}+(ax)^{n} ) )

x(t) = (1/a)·Anti-pow[n]-ln( (1/n)·(vat)^{n} )

Deducción:

d_{x}[ pow[n]-ln(x) ] = d_{x}[ x^{n}·ln(x) ] = nx^{n+(-1)}·ln(x)+x^{n+(-1)} = ...

... (1/x)·( nx^{n}·ln(x)+x^{n} ) = (1/x)·( n·pow[n]-ln(x)+x^{n} )

Ley:

d_{t}[x] = v·( (ax)/(n+ax) )·( m/(vat) )

x(t) = (1/a)·Anti-pow[n]-e( (1/m)·(vat)^{m} )

Deducción:

d_{x}[ pow[n]-e(x) ] = d_{x}[ x^{n}·e^{x} ] = nx^{n+(-1)}·e^{x}+x^{n}·e^{x} = ...

... (1/x)·( nx^{n}·e^{x}+x^{n+1}·e^{x} ) = (1/x)·(n+x)·pow[n]-e(x)

Ley:

d_{t}[x] = v·( (ax)/((n+1)+ax) )·( m/(vat) )

x(t) = (1/a)·Anti-pow[n]-ep-[0]( (1/m)·(vat)^{m} )

Deducción:

d_{x}[ pow[n]-ep-[0](x) ] = d_{x}[ x^{n}·ep-[0](x) ] = nx^{n+(-1)}·ep-[0](x)+x^{n}·ep-[(-1)](x) = ...

... nx^{n}·e^{x}+x^{n}·( e^{x}+xe^{x} ) = (1/x)·( (n+1)+x )·pow[n]-ep-[0](x)

Teorema:

pow[n]-ep-[0](x) = pow[n+1]-e(x)

Demostración:

pow[n]-ep-[0](x) = ...

... x^{n}·ep-[0](x) = x^{n}·( xe^{x} ) = ( x^{n}·x )·e^{x} = x^{n+1}·e^{x} = pow[n+1]-e(x)



Principio:

d_{t}[x] = v·f(ax)

x(t) = (1/a)·Anti-[ int[ ( 1/f(s) ) ]d[s] ]-(vat)

d_{t}[ Anti-[ int[ ( 1/f(s) ) ]d[s] ]-(vat) ] = va·f( Anti-[ int[ ( 1/f(s) ) ]d[s] ]-(vat) )



Ley:

d_{t}[x] = v·ln(ax)

x(t) = (1/a)·Anti-[ ln( ln(s) ) [o(s)o] (1/2)·s^{2} ]-(vat)

Ley:

d_{t}[x] = v·( 1/ln(ax) )

x(t) = (1/a)·Anti-[ ln(s)·s+(-s) ]-(vat)



Ley: [ de la hormigonera-A ]

m·d_{t}[w]·r = ( d_{t}[q]·(1/2)·t^{2}+pt )·g·sin(w)

w(t) = ...

... Anti-[ (-1)·cos(s)+ln(sin(s)) [o(s)o] sin(s) ]-( ( 1/(mr) )·( d_{t}[q]·(1/6)·t^{3}+p·(1/2)·t^{2} )·g )

Ley: [ de la hormigonera-B ]

m·d_{t}[w]·r = ( d_{t}[q]·(1/2)·t^{2}+pt )·g·cos(w)

w(t) = ...

... Anti-[ sin(s)+ln(cos(s)) [o(s)o] cos(s) ]-( ( 1/(mr) )·( d_{t}[q]·(1/6)·t^{3}+p·(1/2)·t^{2} )·g )



Ley:

d_{t}[x] = v·( e^{iax}+ad )^{n}

x(t) = (1/a)·Anti-[ ( 1/((-n)+1) )·( e^{is}+ad )^{(-n)+1} [o(s)o] e^{(-1)·is} ]-(vat)

Ley:

d_{t}[x] = v·( e^{ax}+ad )^{n}

x(t) = (1/a)·Anti-[ ( 1/((-n)+1) )·( e^{s}+ad )^{(-n)+1} [o(s)o] (-1)·e^{(-s)} ]-(vat)



Ley:

d_{t}[x] = v·( ( (ax)^{p}+ad )/( (ax)^{q}+ad ) )

x(t) = (1/a)·Anti-[ ( ( 1/(q+1) )·s^{q+1}+ads ) [o(s)o] ( s /o(s)o/( ( 1/(p+1) )·s^{p+1}+ads ) ]-(vat)



Fenómenos meteorológicos:

Ley: [ del rayo ]

U(x) = qgh·( 1+(-1)·(ax) )

int[ U(1/a) ]d[x] = (1/2)·qgh·(1/a)

x(t) = (-1)·(q/m)·gha·(1/2)·t^{2}+(1/a)

V[p] = (1/2)·gh

Ley: [ del relámpago ]

U(x) = qgh·( 1+(ax) )

int[ U(1/a) ]d[x] = (3/2)·qgh·(1/a)

x(t) = (q/m)·gha·(1/2)·t^{2}+(-1)·(1/a)

V[p] = (-1)·(3/2)·gh



Ley: [ del tornado ]

U(x) = qgh·( 1+(-1)·(ax)^{2} )

int[ U(1/a) ]d[x] = (2/3)·qgh·(1/a)

x(t) = (1/a)·sin( ( 2·(q/m)·gh )^{(1/2)}·at+(pi/2) )

V[p] = (2/3)·gh

Ley: [ del relámpago fantasmal ]

U(x) = qgh·( 1+(ax)^{2} )

int[ U(1/a) ]d[x] = (4/3)·qgh·(1/a)

x(t) = (1/a)·sinh( ( 2·(q/m)·gh )^{(1/2)}·at+(pi/2)·i )

V[p] = (-i)·(4/3)·gh

Anexo:

El voltaje imaginario hace un plasma eléctrico como el alma.



Ley: [ del anti-ciclón-frentes-de-fuego ]

U(x) = qg·(ih)·(ax)^{2}

int[ U(1/a) ]d[x] = (1/3)·qg·(ih)·(1/a)

x(t) = (1/a)·e^{( 2·(q/m)·gh )^{(1/2)}·a·kt}

V[p] = (1/3)·g·(ih)

Ley: [ del ciclón-frentes-de-agua ]

U(x) = (-1)·qg·(ih)·(ax)^{2}

int[ U(1/a) ]d[x] = (-1)·(1/3)·qg·(ih)·(1/a)

x(t) = (1/a)·e^{( 2·(q/m)·gh )^{(1/2)}·a·jt )

V[p] = (-1)·(1/3)·g·(ih)

Anexo:

Un frente anti-ciclónico normalmente,

quema un valle o una montaña. 

Un frente ciclónico normalmente,

moja un valle o una montaña. 



Ley: [ de niebla en los valles ]

U(x) = qg·(ih)·(ax)

int[ U(1/a) ]d[x] = (1/2)·qg·(ih)·(1/a)

x(t) = ( (q/m)·g·(ih) )·a·(1/2)·t^{2}

V[p] = (1/2)·g·(ih)

Ley: [ de niebla en las montañas ]

U(x) = (-1)·qg·(ih)·(ax)

int[ U(1/a) ]d[x] = (-1)·(1/2)·qg·(ih)·(1/a)

x(t) = (-1)·( (q/m)·g·(ih) )·a·(1/2)·t^{2}

V[p] = (-1)·(1/2)·g·(ih)



Ley:

Altas presiones positivas:

Bajas presiones negativas:

Ley:

(-1)·P_{0} [< P [< 0 [< P [< P_{0}

F( P,h_{P} ) = ( ( P_{0} )^{2}+(-1)·P^{2} )^{(1/2)}·( h_{P} )^{2}

F( 0,h_{0} ) = P_{0}·( h_{0} )^{2}

Ley:

d_{P}[ F( P,h_{P} ) ] = (-1)·( ( P_{0} )^{2}+(-1)·P^{2} )^{(-1)·(1/2)}·P·( h_{P} )^{2}

d_{h_{P}}[ F( P,h_{P} ) ] = ( ( P_{0} )^{2}+(-1)·P^{2} )^{(1/2)}·2h_{P}

Ley:

h_{P} = ( F( 0,h_{0} )·( ( P_{0} )^{2}+(-1)·P^{2} )^{(-1)·(1/2)} )^{(1/2)}

Anexo:

Si aumenta la presión positiva,

la energía potencial positiva se hace más grande a fuerza constante.

Si aumenta la presión negativa,

la energía potencial negativa se hace más grande a fuerza constante.

Ley:

Perturbación anti-ciclónica de categoría n:

P = ( n/(n+1) )^{(1/2)}·P_{0}

h_{P} = (n+1)·h_{0}

Perturbación ciclónica de categoría n:

P = (-1)·( n/(n+1) )^{(1/2)}·P_{0}

h_{P} = (-1)·(n+1)·h_{0}



Ley: 

Embozamiento de aire caliente:

Embozamiento de aire frío:

Ley:

(-1)·T_{0} [< T [< 0 [< T [< T_{0}

F( T,h_{T} ) = ( ( P_{0} )^{2}+(-1)·( (kT)/V_{0} )^{2} )^{(1/2)}·( h_{T} )^{2}

F( 0,h_{0} ) = P_{0}·( h_{0} )^{2}

Sea E_{0} = P_{0}·V_{0} = k·T_{0} ==>

F( 0,h_{0} ) = k·T_{0}·( 1/V_{0} )·( h_{0} )^{2}

k = ( E_{0}/T_{0} )

Ley:

d_{T}[ F( T,h_{T} ) ] = ...

... (-1)·( ( P_{0} )^{2}+(-1)·( (kT)/V_{0} )·^{2} )^{(-1)·(1/2)}·( k/V_{0} )^{2}·T·( h_{T} )^{2}

d_{h_{T}}[ F( T,h_{T} ) ] = ( ( P_{0} )^{2}+(-1)·( (kT)/V_{0} )^{2} )^{(1/2)}·2h_{T}

Ley:

h_{T} = ( F( 0,h_{0} )·( ( P_{0} )^{2}+(-1)·( (kT)/V_{0} )^{2} )^{(-1)·(1/2)} )^{(1/2)}

Ley:

Perturbación anti-ciclónica de categoría n:

T = ( n/(n+1) )^{(1/2)}·T_{0}

h_{P} = (n+1)·h_{0}

Perturbación ciclónica de categoría n:

T = (-1)·( n/(n+1) )^{(1/2)}·T_{0}

h_{P} = (-1)·(n+1)·h_{0}



Estem atens a una baixa presió negativa ciclónica,

que ens envia fronts de pluja,

y no estarem dominats per les altes presions positives anti-ciclóniques.

Estem atens a una alta presió positiva anti-ciclónica,

que no ens envia fronts de pluja,

y no estarem dominats per les baixes presions negatives ciclóniques.



Clásico:

ix = sh

tx = tch



piixar [o] pijar

cagar [o] cagar


baixar [o] bajar

deixar [o] dejar


això [o] esto

allò [o] eso o aquello


així [o] así


Valencià:

iixte [o] iixe

iixta [o] iixa

iixtos [o] iixos

iixtes [o] iixes


parleixkû iixte valencià.

parletxkû itxte aragonès.



veitx [o] veo

deitx o daitx [o] deo o doy



vaitx [o] voy

deitx o daitx [o] deo o doy



fec o faitx [o] hago

dic [o] digo



Ley: [ de subducción ]

d_{x}[u(x,t)] = ( m/(qgh) )^{(1/2)}·d_{t}[u(x,t)]

u(x,0) = f(x)

u(x,t) = f(x+( (qgh)/m )^{(1/2)}·t)

Ley: [ de dorsal ]

d_{x}[u(x,t)] = (-1)·( m/(qgh) )^{(1/2)}·d_{t}[u(x,t)]

u(x,0) = f(x)

u(x,t) = f(x+(-1)·( (qgh)/m )^{(1/2)}·t)

Ley:

d_{x}[u(x,t)]+(-1)·( m/(qgh) )^{(1/2)}·d_{t}[u(x,t)] = (n/x)·u(x,t)

( 1/(ax) )^{n}·u(x,0) = f(x)

u(x,t) = (ax)^{n}·f(x+( (qgh)/m )^{(1/2)}·t)

Ley:

d_{x}[u(x,t)]+( m/(qgh) )^{(1/2)}·d_{t}[u(x,t)] = (n/x)·u(x,t)

( 1/(ax) )^{n}·u(x,0) = f(x)

u(x,t) = (ax)^{n}·f(x+(-1)·( (qgh)/m )^{(1/2)}·t)

Ley:

d_{x}[u(x,t)]+(-1)·( m/(qgh) )^{(1/2)}·d_{t}[u(x,t)] = na·u(x,t)

( 1/e^{nax} )·u(x,0) = f(x)

u(x,t) = e^{nax}·f(x+( (qgh)/m )^{(1/2)}·t)

Ley:

d_{x}[u(x,t)]+( m/(qgh) )^{(1/2)}·d_{t}[u(x,t)] = na·u(x,t)

( 1/e^{nax} )·u(x,0) = f(x)

u(x,t) = e^{nax}·f(x+(-1)·( (qgh)/m )^{(1/2)}·t)



Ecuación de estado del magma:

Ley:

(-p) [< q [< 0 [< q [< p

F( q,h_{q} ) = ( ( P_{0} )^{2}+(-1)·( (q·V[p])/V_{0} )^{2} )^{(1/2)}·( h_{0} )^{2}

V[p] = ( E_{0}/p )



Definición:

x = e-[2^{(1/2)}]-[mk+r](at)

(y_{1}·...·y_{n}) = e-[2^{(1/2)}]-[mk+r](at)

Axioma:

d_{t}^{2k+1}[x] = d_{t}^{2k}[ (y_{1}·...·y_{n}) ]·2^{(1/2)}·a

d_{t}^{2k+1}[ (y_{1}·...·y_{n}) ] = d_{t}^{2k}[x]·2^{(1/2)}·a

Axioma:

d_{tt}^{2k+2}[x] = d_{t}^{2k+1}[x]·2^{(-1)·(1/2)}·a

d_{tt}^{2k+2}[ (y_{1}·...·y_{n}) ] = d_{t}^{2k+1}[ (y_{1}·...·y_{n}) ]·2^{(-1)·(1/2)}·a

Ley:

F(x,y) = (-k)·< y,x > ==> U(x,y) = (-k)·2xy

(m/2)·( d_{t}[x]^{2}+d_{t}[y]^{2} ) = (-k)·( xy+yx )

x(t) = (1/a)·e-[2^{(1/2)}]-[2k+2+sig(x)·1]( (k/m)^{(1/2)}·it )

y(t) = (1/a)·e-[2^{(1/2)}]-[2k+1+sig(y)·2]( (k/m)^{(1/2)}·it )

Ley:

F(x,y,z) = (-k)·< ayz,axz,ayx > ==> U(x,y,z) = (-k)·3a·xyz

(m/2)·( d_{t}[x]^{2}+d_{t}[y]^{2}+d_{t}[z]^{2} ) = (-k)·( a·xyz+a·yxz+a·zyx )

x(t) = (1/a)·e-[2^{(1/2)}]-[3k+3]( (k/m)^{(1/2)}·it )

y(t) = (1/a)·e-[2^{(1/2)}]-[3k+2+sig(yx)·(-2)]( (k/m)^{(1/2)}·it )

z(t) = (1/a)·e-[2^{(1/2)}]-[3k+1+sig(xz)·(-1)]( (k/m)^{(1/2)}·it )


Definición:

x = e-[3^{(1/2)}]-[mk+r](at)

(y_{1}·...·y_{n}) = e-[3^{(1/2)}]-[mk+r](at)

Axioma:

d_{t}^{2k+1}[x] = d_{t}^{2k}[ (y_{1}·...·y_{n}) ]·3^{(1/2)}·a

d_{t}^{2k+1}[ (y_{1}·...·y_{n}) ] = d_{t}^{2k}[x]·3^{(1/2)}·a

Axioma:

d_{tt}^{2k+2}[x] = d_{t}^{2k+1}[x]·2·3^{(-1)·(1/2)}·a

d_{tt}^{2k+2}[ (y_{1}·...·y_{n}) ] = d_{t}^{2k+1}[ (y_{1}·...·y_{n}) ]·2·3^{(-1)·(1/2)}·a

Ley:

F(x,y) = (-k)·< y+x,x+y > ==> U(x,y) = (-k)·( 2xy+(1/2)·( x^{2}+y^{2} ) )

(m/2)·( d_{t}[x]^{2}+d_{t}[y]^{2} ) = (-k)·( xy+yx+(1/2)·( x^{2}+y^{2} ) )

x(t) = (1/a)·e-[3^{(1/2)}]-[2k+2+sig(x)·1]( (k/m)^{(1/2)}·it )

y(t) = (1/a)·e-[3^{(1/2)}]-[2k+1+sig(y)·2]( (k/m)^{(1/2)}·it )

Ley:

F(x,y,z) = (-k)·< ayz+x,axz+y,ayx+z > ==> U(x,y,z) = (-k)·( 3a·xyz+(1/2)·( x^{2}+y^{2}+z^{2} ) )

(m/2)·( d_{t}[x]^{2}+d_{t}[y]^{2}+d_{t}[z]^{2} ) = ...

... (-k)·( ( a·xyz+a·yxz+a·zyx )+(1/2)·( x^{2}+y^{2}+z^{2} ) )

x(t) = (1/a)·e-[3^{(1/2)}]-[3k+3]( (k/m)^{(1/2)}·it )

y(t) = (1/a)·e-[3^{(1/2)}]-[3k+2+sig(yx)·(-2)]( (k/m)^{(1/2)}·it )

z(t) = (1/a)·e-[3^{(1/2)}]-[3k+1+sig(xz)·(-1)]( (k/m)^{(1/2)}·it )



Definición: [ de energía potencial ]

U(x) = int[ F(x) ]d[x]

Ley: [ Operador Lagraniano de energía cinética ]

(m/2)·d_{t}[x]^{2} = int[ m·d_{tt}^{2}[x] ]d[x]

Deducción:

int[ m·d_{t}[x]·d_{tt}^{2}[x] ]d[t] = int[ m·d_{tt}^{2}[x]·d_{t}[x] ]d[t]



Energías potenciales:

Ley:

Si F(x) = F ==> U(x) = Fx

d_{t}[x(t)] = (F/m)·t

x(t) = (F/m)·(1/2)·t^{2}

Deducción:

(m/2)·d_{t}[x]^{2} = F·(F/m)·(1/2)·t^{2}

Ley:

Si F(x) = (-k)·x ==> U(x) = (-k)·(1/2)·x^{2}

x(t) = re^{(k/m)^{(1/2)}·it}

d_{t}[x(t)] = (k/m)^{(1/2)}·(ir)·e^{(k/m)^{(1/2)}·it}

Deducción:

(m/2)·d_{t}[x]^{2} = (-k)·(1/2)·r^{2}·e^{(k/m)^{(1/2)}·2it}

Ley:

Si F(x) = F+(-k)·x ==> U(x) = Fx+(-k)·(1/2)·x^{2}+(-1)·(1/2)·F·(F/k)

x(t) = re^{(k/m)^{(1/2)}·it}+(F/k)



Definición: [ de potencia energética ]

N( d_{t}[x] ) = int[ F( d_{t}[x] ) ]d[ d_{t}[x] ]

Ley: [ Operador Garriguense de potencia cinética ]

m·d_{t}[x]^{[o(t)o] 2} = int[ m·d_{tt}^{2}[x] ]d[ d_{t}[x] ]

Deducción:

int[ m·d_{tt}^{2}[x]^{2} ]d[t] = int[ m·d_{tt}^{2}[x]·d_{t}[ d_{t}[x] ]d[t] 



Potencias energéticas:

Ley:

Si F( d_{t}[x] ) = F ==> N( d_{t}[x] ) = F·d_{t}[x]

d_{t}[x(t)] = (F/m)·t

x(t) = (F/m)·(1/2)·t^{2}

Deducción:

m·d_{t}[x]^{[o(t)o] 2} = F·(F/m)·t

Ley:

Si F( d_{t}[x] ) = (-b)·d_{t}[x] ==> N( d_{t}[x] ) = (-b)·(1/2)·d_{t}[x]^{2}

d_{t}[x(t)] = (-1)·(b/m)·re^{(-1)·(b/m)·t}

x(t) = re^{(-1)·(b/m)·t}

Deducción:

m·d_{t}[x]^{[o(t)o] 2} = (-b)·(b/m)^{2}·r^{2}·(1/2)·e^{(-2)·(b/m)·t}

Ley:

Si F( d_{t}[x] ) = F+(-b)·d_{t}[x] ==> ...

... N( d_{t}[x] ) = F·d_{t}[x]+(-b)·(1/2)·d_{t}[x]^{2}+(-1)·(1/2)·F·(F/b)

d_{t}[x(t)] = (-1)·(b/m)·re^{(-1)·(b/m)·t}+(F/b)



Ley:

Si F(x) = (-F)·(1/r)^{n}·(n+1)·x^{n} ==> U(x) = (-F)·(1/r)^{n}·x^{n+1}

x(t) = ( (1/2)^{(1/2)}·(n+(-1))·( (1/m)·F·(1/r)^{n} )^{(1/2)}·it )^{( (-2)/(n+(-1)) )}

Deducción:

(m/2)·d_{t}[x]^{2} = ...

... (-F)·(1/r)^{n}·( (1/2)^{(1/2)}·(n+(-1))·( (1/m)·F·(1/r)^{n} )^{(1/2)}·it )^{( (-2)·(n+1)/(n+(-1)) )}

Ley:

Si F( d_{t}[x] ) = (-F)·(1/v)^{n}·(n+1)·d_{t}[x]^{n} ==> ...

... N( d_{t}[x] ) = (-F)·(1/v)^{n}·d_{t}[x]^{n+1}

d_{t}[x(t)] = ( (n+(-1))·(n+1)·( (1/m)·F·(1/v)^{n} )·t )^{( (-1)/(n+(-1)) )}

Deducción:

m·d_{t}[x]^{[o(t)o] 2} = ...

... (-F)·(1/v)^{n}·( (n+(-1))·(n+1)·( (1/m)·F·(1/v)^{n} )·t )^{( ( (-1)·(n+1) )/(n+(-1)) )}



Definición:

x-[n]-(t) = e-[n]-[mk+r](t)

d_{t}[ ( x-[n]-(t) )^{k} ] = k·( x-[n]-(t) )^{k}

int[ (n+(-1))·( x-[n]-(t) )^{k} ]d[t] = n·(1/k)·( x-[n]-(t) )^{k}

Ley:

F(x,y,z) = (-1)·(pq)·k·(1/r)^{2}·(1/v)^{2}·...

... < d_{t}[y]d_{t}[z],d_{t}[x]d_{t}[z],d_{t}[y]d_{t}[x] > ==> ...

... N(x,y,z) = (-1)·(pq)·k·(1/r)^{2}·(1/v)^{2}·3·d_{t}[x]d_{t}[y]d_{t}[z]

m·( d_{t}[x]^{[o(t)o] 2}+d_{t}[y]^{[o(t)o] 2}+d_{t}[z]^{[o(t)o] 2} ) = ...

... (-1)·(pq)·k·(1/r)^{2}·(1/v)^{2}·3·d_{t}[x]d_{t}[y]d_{t}[z]

x(t) = int[ ve-[2]-[3k+3]( (-1)·(1/m)·(pq)·k·(1/r)^{2}·(1/v)·t ) ]d[t]

y(t) = int[ ve-[2]-[3k+2+sig(yx)·(-2)]( (-1)·(1/m)·(pq)·k·(1/r)^{2}·(1/v)·t ) ]d[t]

z(t) = int[ ve-[2]-[3k+1+sig(xz)·(-1)]( (-1)·(1/m)·(pq)·k·(1/r)^{2}·(1/v)·t ) ]d[t]

Deducción:

m·( d_{t}[x] )^{[o(t)o] 2} = int[ m·d_{tt}^{2}[x]^{2} ]d[t] = ...

... (-1)·(pq)·k·(1/r)^{2}·v·(2/2)·( e-[2]-[3k+r]( (-1)·(1/m)·(pq)·k·(1/r)^{2}·(1/v)·t ) )^{2}

Definición:

x-[p,q]-(t) = e-[p,q]-[mk+r](t)

d_{t}[ p·( x-[p,q]-(t) )^{k} ] = ( p+1 )·k·( x-[p,q]-(t) )^{k}

int[ q·( x-[p,q]-(t) )^{k} ]d[t] = ( q+(-1) )·(1/k)·( x-[p,q]-(t) )^{k}

Teorema:

int[ ( p+1 )·x(t) ]d[t] = ( (p+1)+(-1) )·x(t) = p·x(t)

d_{t}[ ( q+(-1) )·x(t) ] = ( ( q+(-1) )+1 )·x(t) = q·x(t)

Ley:

F(x,y,z) = (-1)·(pq)·k·(1/r)^{2}·(1/v)^{2}·...

... < d_{t}[y]d_{t}[z]+v·d_{t}[x],d_{t}[x]d_{t}[z]+v·d_{t}[y],d_{t}[y]d_{t}[x]+v·d_{t}[z] > ==> ...

... N(x,y,z) = (-1)·(pq)·k·(1/r)^{2}·(1/v)^{2}·...

... ( 3·d_{t}[x]d_{t}[y]d_{t}[z]+(v/2)·( d_{t}[x]^{2}+d_{t}[y]^{2}+d_{t}[z]^{2} ) )

m·( d_{t}[x]^{[o(t)o] 2}+d_{t}[y]^{[o(t)o] 2}+d_{t}[z]^{[o(t)o] 2} ) = ...

... (-1)·(pq)·k·(1/r)^{2}·(1/v)^{2}·...

... ( 3·d_{t}[x]d_{t}[y]d_{t}[z]+(v/2)·( d_{t}[x]^{2}+d_{t}[y]^{2}+d_{t}[z]^{2} ) )

x(t) = int[ ve-[p,q]-[3k+3]( (-1)·(1/m)·(pq)·k·(1/r)^{2}·(1/v)·t ) ]d[t]

y(t) = int[ ve-[p,q]-[3k+2+sig(yx)·(-2)]( (-1)·(1/m)·(pq)·k·(1/r)^{2}·(1/v)·t ) ]d[t]

z(t) = int[ ve-[p,q]-[3k+1+sig(xz)·(-1)]( (-1)·(1/m)·(pq)·k·(1/r)^{2}·(1/v)·t ) ]d[t]

Deducción:

m·d_{t}[x]^{[o(t)o] 2} = int[ m·d_{tt}^{2}[x]^{2} ]d[t] = ...

... (-1)·(pq)·k·(1/r)^{2}·v·...

... int[ 4·( e-[p,q]-[3k+r]( (-1)·(1/m)·(pq)·k·(1/r)^{2}·(1/v)·t ) )^{2} ]...

... d[(-1)·(1/m)·(pq)·k·(1/r)^{2}·(1/v)·t] = ...

... (-1)·(pq)·k·(1/r)^{2}·v·(3/2)·( e-[p,q]-[3k+r]( (-1)·(1/m)·(pq)·k·(1/r)^{2}·(1/v)·t ) )^{2}



Ley: [ de fuerza Lorentz ]

F(x,y,z) = (pq)·k·(1/r)^{3}·< x,y,z >

L(x,y,z) = (-1)·(pq)·k·(1/r)^{3}·( r/(iv) )·< d_{t}[x],d_{t}[y],d_{t}[z] >

F(x,y,z)+L(x,y,z) = 0

x(t) = e^{(v/r)·it}·cos(s)·cos(w)

y(t) = e^{(v/r)·it}·sin(s)·cos(w)

z(t) = e^{(v/r)·it}·sin(w)

Anexo:

La fuerza de atracción es elíptica.

La fuerza de repulsión es hiperbólica.




Estupidez:

(m/2)·d_{t}[x]^{2} = U(x)

d_{t}[ (m/2)·d_{t}[x]^{2} ] = d_{t}[ U(x) ]

m·d_{t}[x]·d_{tt}^{2}[x] = d_{x}[ U(x) ]·d_{t}[x]

m·d_{tt}^{2}[x] = d_{x}[ U(x) ] = F(x)



Mecánica I:

Ley:

La energía cinética es un trabajo de posición del operador de Newton.

La potencia cinética es un trabajo de velocidad del operador de Newton.

Ley:

La energía potencial es un trabajo de posición,

de una fuerza dependiente de la posición.

La potencia energética es un trabajo de velocidad,

de una fuerza dependiente de la velocidad.



Ley: [ fundamental de la energía ]

m·d_{tt}^{2}[x] = sum[k = 1]-[n][ F_{k}(x) ]

<==>

(m/2)·d_{t}[x]^{2} = sum[k = 1]-[n][ U_{k}(x) ]

Ley: [ fundamental de la potencia ]

m·d_{tt}^{2}[x] = sum[k = 1]-[n][ F_{k}( d_{t}[x] ) ]

<==>

m·( d_{t}[x] )^{[o(t)o] 2} = sum[k = 1]-[n][ N_{k}( d_{t}[x] ) ]

No hay comentarios:

Publicar un comentario