viernes, 24 de septiembre de 2021

ecuació de la recta y pla tangent

Ecuació de la recta tangent:

u(x) = d_{x}[f(a)]·(x+(-a))+f(a)

Sigui f(x) = x^{2} ==>

u(x) = 2a·(x+(-a))+a^{2}

Sigui f(x) = x ==>

u(x) = x


Ecuació de pla tangent:

u(x,y) = d_{x}[F(a,b)]·(x+(-a))+d_{y}[F(a,b)]·(y+(-b))+F(a,b)

Sigui F(x,y) = x^{2}+y^{2} ==>

u(x,y) = 2a·(x+(-a))+2b·(y+(-b))+( a^{2}+b^{2} )

Sigui F(x,y) = x+y ==>

u(x,y) = x+y

F(x_{j}) és diferenciable <==> F(x_{j}) té hyper-pla tangent <==> ...

... [ED][ D[F(x_{j})] = < d_{x_{1}}[F_{1}(x_{j})],...,d_{x_{n}}[F_{n}(x_{j})] > ].


F(x_{j}) = ...

... int[ d_{x_{1}}[F_{1}(x_{j})] ] d[x_{1}]+...+int[ d_{x_{n}}[F_{n}(x_{j})] ] d[x_{n}]


f(x) = nx^{n+(-1)}+ny^{n+(-1)}·d_{x}[y]

int[ f(x) ]d[x] = x^{n}+y^{n}

y(x) = ( int[ f(x) ]d[x]+(-1)·x^{n} )^{(1/n)}


f(x) = nx^{n+(-1)}+(1/y)·d_{x}[y]

int[ f(x) ]d[x] = x^{n}+ln(y)

y(x) = e^{( int[ f(x) ]d[x]+(-1)·x^{n} )}


f(x) = nx^{n+(-1)}+e^{y}·d_{x}[y]

int[ f(x) ]d[x] = x^{n}+e^{y}

y(x) = ln( int[ f(x) ]d[x]+(-1)·x^{n} )


ecuacions diferencials:

f(x) = nx^{n+(-1)}+mx^{m+(-1)}·d_{x}[y]

int[ f(x) ]d[x] = x^{n}+( x^{m} [o(x)o] y )

y(x) = ( ( int[ f(x) ]d[x]+(-1)·x^{n} )/o(x)o/x^{m} )


f(x) = y^{n}+d_{x}[y]

y(x) = [[(1/(-n)+1)]]( ( (-1)·((-n)+1) )^{(-n)+1}·x , ( int[ f(x) ]d[x] )^{(-n)+1} )


f(x) = e^{y}+d_{x}[y]

y(x) = ln( [[(-1)]]( x , ( e^{int[ f(x) ]d[x]} )^{(-1)} ) )


f(x) = e^{ny}+d_{x}[y]

y(x) = ln( [[(-1)·(1/n)]]( x , ( e^{int[f(x)]d[x]} )^{(-n)} ) )


d_{x}[ h( [[k]](f(x),g(x)) ) ] = ...

... d_{[[k]](f(x),g(x))}[ h( [[k]](f(x),g(x)) ) ]·k·[[k+(-1)]](f(x),g(x))·d_{x}[f(x)]+...

... d_{x}[ h( ( g(x) )^{k} ) ] )


f(x) = ( ln(y) )^{n}+d_{x}[y]

y(x) = ...

.... e^{ [[e[(-1)]-pow[(1/((-n)+1))]]]( (-1)·((-n)+1)·x , ...

... e[1]-pow[(-1)·(1/((-n)+1))]( ln( int[f(x)][x] ) ) ) }

f(x) = ( ln(1/y) )^{n}+d_{x}[y]

y(x) = ...

... e^{ (-1)·[[e[1]-pow[(1/((-n)+1))]]]( ((-n)+1)·x , ...

... e[(-1)]-pow[(-1)·(1/((-n)+1))]( ln( int[f(x)][x] ) ) ) }


càlcul diferencial 2:

ln-pow[n](x) = x^{n}·ln(x) [o] anti-ln-pow[n](x)

e-pow[n](x) = x^{n}·e^{x} [o] anti-e-pow[n](x)

d_{x}[anti-ln-pow[n](x)] = ( anti-ln-pow[n](x)/(nx+( anti-ln-pow[n](x) )^{n}) )

d_{x}[anti-e-pow[n](x)] = (1/x)·( anti-e-pow[n](x)/(n+( anti-ln-pow[n](x) )) )


d_{x}[y] = ( (x^{n+(-1)}y)/(x^{n}+y^{n}) )

y(x) = anti-ln-pow[n]( x^{n}/n )

d_{x}[y] = ( e^{nx}/(e^{nx}+e^{ny}) )

y = ln(u)

d_{x}[u] = ( (e^{nx}u)/(e^{nx}+u^{n}) )

y(x) = ln( anti-ln-pow[n]( e^{nx}/n ) )


d_{x}[y] = ( my/(n+y) )·(1/x)

y(x) = anti-e-pow[n]( x^{m} )

d_{x}[y] = ( my/(n+y) )

y(x) = anti-e-pow[n]( e^{mx} )


F(x,y) = kx+(n+(-k))·y+h( px+qy+(-m) )

0 = k+hp

0 = (n+(-k))+hq

0 = kx+hpx

0 = (n+(-k))y+hqy

0 = kx+(n+(-k))y+hm

h = (-1)·(n/m)

x = 1

y = 1

F(x,y) = kx+(n+(-k))·y+h( px+qy+(-m) )

F(1,1) = n

G(x,y) = kx+(n+(-k))·y+h( px+qy )

G(1,1) = 0


F(x,y) = x^{k}+y^{n+(-k)}+h( px+qy+(-m) )

0 = kx^{k+(-1)}+hp

0 = (n+(-k))·y^{n+(-k)+(-1)}+hq

0 = kx^{k+(-1)}+(n+(-k))y^{n+(-k)+(-1)}+hm

h = (-1)·( (k^{k}+(n+(-k))^{n+(-k)})/m )

x = k

y = (n+(-k))

F(x,y) = x^{k}+y^{n+(-k)}+h( px+qy+(-m) )

F(k,n+(-k)) = k^{k}+(n+(-k))^{n+(-k)}

G(x,y) = x^{k}+y^{n+(-k)}+h( px+qy )

G(k,n+(-k)) = 0


F(x,y) = ke^{x}+(n+(-k))e^{y}+h( px+qy+(-m) )

0 = ke^{x}+hp

0 = (n+(-k))e^{y}+hq

0 = ke^{x}+(n+(-k))e^{y}+hm

h = (-1)·(n/m)

x = 0

y = 0

F(x,y) = ke^{x}+(n+(-k))e^{y}+h( px+qy+(-m) )

F(0,0) = n

G(x,y) = ke^{x}+(n+(-k))e^{y}+h( px+qy )

G(0,0) = 0



F(x,y) = e^{kx}+e^{(2+(-k))y}+h( px+qy+(-m) )

0 = ke^{kx}+hp

0 = (2+(-k))e^{(2+(-k))y}+hq

0 = ke^{kx}+(2+(-k))e^{(2+(-k))y}+hm

h = (-1)·(2/m)

x = 0

y = 0

F(x,y) = e^{kx}+e^{(2+(-k))y}+h( px+qy+(-m) )

F(0,0) = 2

G(x,y) = e^{kx}+e^{(2+(-k))y}+h( px+qy )

G(0,0) = 0

jueves, 23 de septiembre de 2021

kung-fu y caminar sin saber a donde vatchnar

dos amantis

|x|-|ooxx|

tres tiburón

|x|-|ooox|


dos hormiga

|o|-|oxxx|

tres águila

|o|-|ooxx|


Dual Luminoso:

Es irreversible la muerte,

no destruyéndote andando.

Quizás Dios te puede poner los símbolos de destrucción

pero no te destruirás,

porque no puedes andar.

Si no te destruyes andando,

no te haces nuevo,

y no puedes tener nueva energía.

Es reversible la muerte,

destruyéndote andando.

Dios te puede poner los símbolos de destrucción

y entonces también te destruirás,

porque puedes andar.

Si te destruyes andando,

te haces nuevo,

y puedes tener nueva energía.

Dual Tenebroso:

Es irreversible-irreversible-reversible la muerte,

no destruyéndote-destruyéndote-construyéndote andando.

Quizás Dios te puede poner los símbolos de destrucción

pero no te destruirás-destruirás-construirás,

porque no puedes andar.

max{0,min{1,(1/3)}} = (1/3)

Si no te destruyes-destruyes-construyes andando,

no te haces nuevo-nuevo-viejo,

y no puedes tener nueva-nueva-vieja energía.

Es reversible-reversible-irreversible la muerte,

destruyéndote-destruyéndote-construyéndote andando.

Dios te puede poner los símbolos de destrucción

y entonces también te destruirás-destruirás-construirás,

porque puedes andar.

min{1,max{0,(2/3)}} = (2/3)

Si te destruyes-destruyes-construyes andando,

te haces nuevo-nuevo-viejo,

y puedes tener nueva-nueva-vieja energía.


Dual Luminoso:

El que camina sin saber a donde vatchnar con lo pie derecho,

se destruye.

El que camina sin saber a donde vatchnar con lo pie izquierdo,

se construye.

Dual Tenebroso:

El que camina sin saber a donde vatchnar con lo pie derecho-derecho-izquierdo,

se destruye-destruye-construye.

El que camina sin saber a donde vatchnar con lo pie izquierdo-izquierdo-derecho,

se construye-construye-destruye.


Dual Luminoso:

Si llueve entonces se moja porque no lleva paraguas.

Llueve y no se moja aunque quizás no lleva paraguas.

Dual Tenebroso:

Si llueve entonces se moja-moja-seca porque no lleva paraguas.

min{max{max{0,(2/3)},0},1} = (2/3)

Llueve y no se moja-moja-seca aunque quizás no lleva paraguas.

max{min{min{1,(1/3)},1},0} = (1/3)

martes, 21 de septiembre de 2021

analisis matemàtic: continuitat

Continuitat:

[As][ s > 0 ==> [Ed][ d > 0 & ( Si |x+(-a)| < d ==> |f(x)+(-1)·f(a)| < s ) ] ]

[As][ s > 0 ==> [Ed][ d > 0 & ( Si |h| < d ==> |f(a+h)+(-1)·f(a)| < s ) ] ]

[As][ s > 0 ==> [Ed][ d > 0 & ( Si |(-h)| < d ==> |f(a+(-h))+(-1)·f(a)| < s ) ] ]


lim[a-->h][ | ln(1+(h/a)) | ] = ln(2) >] s

ln(x) no és contínua a x = 0

lim[a-->h][ | (-h)/((a+h)·a) | ] = (1/2)·oo >] s

(1/x) no és contínua a x = 0

lim[a-->h][ | 0^{2}/((a+h)·a) | ] = (1/2) >] s 

(x/x) no és contínua a x = 0


lim[a-->h][ | 0^{2}/((a+h+(-a))·(a+(-a)) | ] = 1 >] s 

( (x+(-a))/(x+(-a)) ) no és contínua a x = a

lim[a-->h][ | 0^{2}/(((-a)+h+a)·((-a)+a)) | ] = 1 >] s 

( (x+a)/(x+a) ) no és contínua a x = (-a)


Si f(x) es contínua ==> ( f(x) )^{n} és contínua.

lim[h-->0][ | ( f(x)+h )^{n}+(-1)·( f(x) )^{n} | ] = 0 < s

 

Sigui: [Ax][ 0 [< ( f(x) )^{n} [< |x| ] ==>

f(0) = 0

0 [< f(1) [< 1

Teorema destructor:

Si f(x) [< x ==> |f(x)+(-x)+h| < |x+(-x)+h|

Si f(x) >] x ==> |f(x)+(-x)+h| < |x+(-x)+h|

Teorema destructor:

Sigui s > 0 ==>

Es defineish: 0 < d [< s ==>

Si |x+(-1)| [< d ==>

|f(1+h)+(-1)·f(1)| [< | |1+h|^{(1/n)}+(-1)·f(1) | = ...

... |(1+h)^{(1/n)}+(-1)·f(1)| [< ...

... |(1+h)+(-1)·f(1)| = |f(1)+(-1)·(1+h)| < |1+(-1)+(-h)| = |(-h)| = |x+(-1)| [< d [< s

f(x) no és contínua en x = 1

0 [< f(-1) [< 1

Teorema destructor:

Si f(x) [< x ==> |f(x)+(-x)+h| < |x+(-x)+h|

Si f(x) >] x ==> |f(x)+(-x)+h| < |x+(-x)+h|

Teorema destructor:

Sigui s > 0 ==>

Es defineish: 0 < d [< s ==>

Si |x+1| [< d ==>

|f( (-1)+(-h) )+(-1)·f(-1)| [< | |(-1)+(-h)|^{(1/n)}+(-1)·f(-1) | = ...

... |(1+h)^{(1/n)}+(-1)·f(-1)| [< ...

... |(1+h)+(-1)·f(-1)| = |f(-1)+(-1)·(1+h)| < |1+(-1)+(-h)| = |(-h)| = |x+1| [< d [< s

f(x) no és contínua en x = (-1)


Si f(x) es contínua ==> |f(x)| és contínua.

Si f(x) >] 0 ==> lim[h-->0][ | |f(x)+h|+(-1)·|f(x)| | ] = 0 < s

Si f(x) [< 0 ==> lim[h-->0][ | |f(x)+(-h)|+(-1)·|f(x)| | ] = 0 < s


Sigui: [Ax][ 0 [< |f(x)| [< |x| ] ==>

f(0) = 0

0 [< |f(1)| [< 1

Teorema destructor:

Si f(x) [< x ==> |f(x)+(-x)+h| < |x+(-x)+h|

Si f(x) >] x ==> |f(x)+(-x)+h| < |x+(-x)+h|

Teorema destructor:

Sigui s > 0 ==>

Es defineish: 0 < d [< s ==>

Si |x+(-1)| [< d ==>

| |f(1+h)|+(-1)·|f(1)| | [< | |1+h|+(-1)·|f(1)| | = ...

... | |f(1)|+(-1)·|1+h| | < | 1+(-1)·|1+h| | = |(-h)| = |x+(-1)| [< d [< s

f(x) no és contínua en x = 1

0 [< |f(-1)| [< 1

Teorema destructor:

Si f(x) [< x ==> |f(x)+(-x)+h| < |x+(-x)+h|

Si f(x) >] x ==> |f(x)+(-x)+h| < |x+(-x)+h|

Teorema destructor:

Sigui s > 0 ==>

Es defineish: 0 < d [< s ==>

Si |x+1| [< d ==>

| |f((-1)+(-h))|+(-1)·|f(-1)| | [< | |(-1)+(-h)|+(-1)·|f(-1)| | = ...

... | |f(-1)|+(-1)·|(-1)+(-h)| | < | 1+(-1)·|(-1)+(-h)| | = |(-h)| = |x+1| [< d [< s

f(x) no és contínua en x = (-1)


[Ax][ 0 [< ( f(x) )^{n} [< |x| ]

f(x) = ( |x|^{2}/(|x+1|·|x+(-1)|) )^{(1/n)}

[Ax][ 0 [< |f(x)| [< |x| ]

f(x) = ( x^{2}/( (x+1)·(x+(-1)) ) )

|x^{2}| = |x·x| = |x|·|x| = |x|^{2}

topología

E_{k} = { x€[0,oo]_{K} : x < a_{1}+...(k)...+a_{k} }

F_{k} = { x€[0,oo]_{K} : a_{1}+...(k)...+a_{k} [< x }

Si x < S_{m} [< a_{1}+...(k)...+a_{k} [< S_{n} ==>

E_{n} = E_{m}[ || ]...(k)...[ || ]E_{n}

E_{m} = E_{m}[ & ]...(k)...[ & ]E_{n}

E_{m} [<< ...(k)... [<< E_{n}

Si S_{m} [< a_{1}+...(k)...+a_{k} [< S_{n} [< x ==>

F_{m} = F_{n}[ || ]...(k)...[ || ]F_{m}

F_{n} = F_{n}[ & ]...(k)...[ & ]F_{m}

F_{n} [<< ...(k)... [<< F_{m}


G_{k} = { x€[0,oo]_{K} : x [< a_{1}+...(k)...+a_{k} }

H_{k} = { x€[0,oo]_{K} : a_{1}+...(k)...+a_{k} < x }

Si x [< S_{m} [< a_{1}+...(k)...+a_{k} [< S_{n} ==>

G_{n} = G_{m}[ || ]...(k)...[ || ]G_{n}

G_{m} = G_{m}[ & ]...(k)...[ & ]G_{n}

G_{m} [<< ...(k)... [<< G_{n}

Si S_{m} [< a_{1}+...(k)...+a_{k} [< S_{n} < x ==>

H_{m} = H_{n}[ || ]...(k)...[ || ]H_{m}

H_{n} = H_{n}[ & ]...(k)...[ & ]H_{m}

H_{n} [<< ...(k)... [<< H_{m}


Homotopía:

[Es][ f(1,0) = g(1,0)+s ] & [Es][ f(0,1) = g(0,1)+s ]

reflexiva

s = f(1,0)+(-1)·g(1,0) & s = f(0,1)+(-1)·g(0,1)

simétrica:

Es defineish: t = (-s)

transitiva:

Es defineish: t = s_{1}+s_{2}


f: { x }x{ y } ---> { x^{2}+y^{2} } & ...

... < x,y > ---> f(x,y) = x^{2}+y^{2}

f(0,1) = 1

f(1,0) = 1

f: { x^{2} }x{ y^{2} } ---> { x^{2}+y^{2} } & ...

... < x,y > ---> f(x,y) = x+y

f(0,1) = 1

f(1,0) = 1

f: { xy }x{ yx } ---> { x^{2}+y^{2} } & ...

... < x,y > ---> f(x,y) = (1/y)^{2}·x^{2}+(1/x)^{2}·y^{2}

f(0,1) = oo^{2}

f(1,0) = oo^{2}

f: { x+y }x{ y+x } ---> { x^{2}+y^{2} } & ...

... < x,y > ---> f(x,y) = (x+(-y))^{2}+(y+(-x))^{2}

f(0,1) = 2

f(1,0) = 2

f: { x^{2}+y }x{ y^{2}+x } ---> { x^{2}+y^{2} } & ...

... < x,y > ---> f(x,y) = (x+(-y))+(y+(-x))

f(0,1) = 0

f(1,0) = 0


f: { g(x) }x{ g(y) } ---> { x^{2}+y^{2} } & ...

... < x,y > ---> f(x,y) = ( g^{o(-1)}(x) )^{2}+( g^{o(-1)}(y) )^{2}

f(0,1) = ( g^{o(-1)}(1) )^{2}+( g^{o(-1)}(0) )^{2}

f(1,0) = ( g^{o(-1)}(0) )^{2}+( g^{o(-1)}(1) )^{2}

f: { g(x)+y }x{ g(y)+x } ---> { x^{2}+y^{2} } & ...

... < x,y > ---> f(x,y) = ( g^{o(-1)}(x+(-y)) )^{2}+( g^{o(-1)}(y+(-x)) )^{2}

f(0,1) = ( g^{o(-1)}(-1) )^{2}+( g^{o(-1)}(1) )^{2}

f(1,0) = ( g^{o(-1)}(1) )^{2}+( g^{o(-1)}(-1) )^{2}

lunes, 20 de septiembre de 2021

stowed-kah y stehed-kah

present-toh:

I smehnish-koh

I stare-koh smehning-kah

I havere-koh smehned-kah

imperfect-toh:

I stave-koh smehning-kah

I havíe-koh smehned-kah

Anterior-toh

vare-koh smehnish-koh

vare-koh stader-koh smehning-kah

vare-koh havader-koh smehned-kah

subjuntive-toh:

I stuviese-koh smehning-kah

I huviese-koh smehned-kah


plat-matchéh.

plate-matchéh.


I gowish-koh ur-rapidi-kowish-kah to my haws-matchéh.

I gowish-koh ur-lenti-kowish-kah to my haws-matchéh.


I gehish-koh ur-rapidi-kehish-kah to my haws-matchéh.

I gehish-koh ur-lenti-kehish-kah to my haws-matchéh.


my tranke-matchéh stare-koh ur-duri-kowish-kah,

becose I stare-koh anai-ed-bero-kowish-kah.

my tranke-matchéh stare-koh ur-blandi-kowish-kah,

becose I stare-koh anai-ed-otza-kowish-kah.


my tranke-matchéh stare-koh ur-duri-kehish-kah,

becose I stare-koh anai-ed-bero-kehish-kah.

my tranke-matchéh stare-koh ur-blandi-kehish-kah,

becose I stare-koh anai-ed-otza-kehish-kah.


I havere-koh smoked-kah a biturbi-kowish-kah.

I havere-koh smoked-kah a ele-kowish-kah.


I havere-koh smehned-kah a biturbi-kehish-kah.

I havere-koh smehned-kah a ele-kehish-kah.


I stare-koh drinking-kah a fante-matchéh of lemon-koh.

I stare-koh drinking-kah a fante-matchéh of oransh-koh.


I stare-koh trinking-kah a fante-matchéh of lemon-koh.

I stare-koh trinking-kah a fante-matchéh of oransh-koh.

derivades

d_{x}[a^{x}] = e^{x}·ln(a)

d_{log_{a}(x)}[a^{log_{a}(x)}]·d_{x}[log_{a}(x)] = 1

e^{log_{a}(x)}·ln(a)·d_{x}[log_{a}(x)] = 1

e^{log_{a}(e^{ln(x)})}·ln(a)·d_{x}[log_{a}(x)] = 1

d_{x}[log_{a}(x)] = (1/x)^{log_{a}(e)}·(1/ln(a))


log_{a}(x) = ( 1/(ln(a)+(-1)) )·x^{(1+(-1)·log_{a}(e))}


a^{x} = e^{ln(a)·x}

1 = log_{a}(e)·ln(a)