jueves, 27 de abril de 2023

Bolsa y física y funciones-elípticas

d_{x}[y(x)] = ln(ps)·y(x)

y(1) = ps

d_{x}[y(x)] = ln(p/s)·y(x)

y(1) = (p/s)


2 socios:

s = 5 & s = 10

Cotización al día de:

p = 7.50€

Audiencia:

75 personas [< (7.50)·(1/10) < 150 personas

150 personas [< (7.50)·(1/5) < 3,750 personas

3,750 personas [< (7.50)·5 < 7,500 personas

7,500 personas [< (7.50)·10 

(p/10) = 0.75€

0.25+0.25+0.25

0.30+0.30+0.15

(p/5) = 1.50€

0.50+0.50+0.50

0.60+0.60+0.30

(5p) = 37.50€

12.50+12.50+12.50

15.00+15.00+7.50

(10p) = 75.00€

25.00+25.00+25.00

30.00+30.00+15.00


Ley:

d_{t}[x] = ax^{s}

d_{tt}^{2}[y] = bx^{(-s)}·d_{t}[x]·f(ut)

y(t) = (ab)·(1/u)^{2}·int-int[ f(ut) ]d[ut]d[ut]

x(t) = ( ((-s)+1)·at )^{( 1/((-s)+1) )}

Ley:

d_{t}[x] = ax

d_{tt}^{2}[y] = b·(1/x)·d_{t}[x]·f(ut)

y(t) = (ab)·(1/u)^{2}·int-int[ f(ut) ]d[ut]d[ut]

x(t) = e^{at}

Ley:

d_{t}[x] = v

d_{tt}^{2}[y] = (k/m)·(1/n!)·ax^{n}

y(t) = (k/m)·av^{n}·( 1/(n+2)! )·t^{n+2}

Ley:

d_{tt}^{2}[x] = (q/m)·g

d_{tt}^{2}[y] = (k/m)·(1/(2n)!)·a·(2x)^{n}

y(t) = (k/m)·( (q/m)·g )^{n}·a·( 1/(2n+2)! )·t^{2n+2}


Cardinal:

#0^{n} = 0

( 1+(-1) )^{n} = 0

#oo^{n} = oo

f(k_{1},...,k_{n}) = k_{1}·2^{k_{2}}·...(n)...·n^{k_{n}}

lim[n = oo][ ( an^{p+1}+bn )/( cn^{p+1}+dn ) ] = (a/c) != 1 & (oo/oo) = ?

lim[n = oo][ ( a·(1/n)^{p+1}+b·(1/n) )/( c·(1/n)^{p+1}+d·(1/n) ) ] = (b/d) != 1 & (0/0) = ?

lim[n = oo]-[p = k+q][ ( an^{p}/bn^{q} ) ] = oo

lim[n = oo]-[q = k+p][ ( an^{p}/bn^{q} ) ] = 0


Potsere-dut awi-neshek he-de-tek fumretzen-ten-dut-zatu-dut més-nek tabaki-koak que ayere-dut,

sóc-de-tek awi-neshek més-nek adicti-koashek al tabaki-koak,

manya-neshek intentatzi-ten-dut-zaré-de-tek fumretzen-ten-dut-zare-dut menys-nek tabaki-koak.

Potsere-dut awi-neshek he-de-tek fumretzen-ten-dut-zatu-dut menys-nek tabaki-koak que ayere-dut,

sóc-de-tek awi-neshek menys-nek adicti-koashek al tabaki-koak.

manya-neshek intentatzi-ten-dut-zaré-de-tek fumretzen-ten-dut-zare-dut més-nek tabaki-koak.


Ley:

d_{tt}^{2}[x] = u^{2}·r·sin(s)

m·u^{2}·r·sin(s) = T·sin(s)+N·cos(s)

qg = T·cos(s)+(-1)·N·sin(s)

T = ( m·u^{2}·r·( sin(s) )^{2}+qg·cos(s) )

N = ( m·u^{2}·r·sin(s)·cos(s)+(-1)·qg·sin(s) )


for( [k] = 1 ; [k] == [n]; [k]++)

[polinomio] = vector-x[k]·potencia([x],[k])+[polinomio];

for( [k] = not(1) ; [k] == not([n]); [k]--)

{

[polinomio-A] = vector-y[not(k)]+[y]·[polinomio-A]

}

[polinomio-B] = potencia([y],[n])


A Mireia Ribas no la conozco de nada,

ni sepo nada de ella,

solo sepo que quizás es matemática,

porque acababa la carrera cuando yo estudiaba.


Tenéis que decir que no me conocéis de nada,

y decir que todo lo que habéis dicho de mi,

vos lo habéis inventado,

para neutralizar el buey del prójimo,

porque sinó vos tendréis que crucificar,

por hacer-me un Peráclito.


Teorema:

Si 1 [< a_{n} [< ( a_{n+1} )^{(1/m)} ==> a_{n} es creciente

Si 1 >] a_{n} >] ( a_{n+1} )^{(1/m)} >] 0 ==> a_{n} es decreciente


Ley:

z(x) = < x,x,x,(1/x)^{3} > es un placer.

x Love-Millers

z(x) = < x,x,x,(-3)·x > es un dolor.

x Hate-Millers

Ley:

z(x) = < x,x,(-x),(-1)·(1/x)^{3} > es un placer.

z(x) = < x,x,(-x),(-x) > es un dolor.

Teoría de Miller:

Los símbolos de placer,

que están cargados con Love-Millers,

son el Cielo.

Los símbolos de dolor,

que están cargados con Hate-Millers,

son el Infierno.


No puedes vatchnar-te al bueno,

si este es el malo,

porque solo tienes Hate-Millers.

No puedes vatchnar-te al malo,

si este es el bueno,

porque solo tienes Love-Millers.


Ley: [ de virgen ]

z(x) = < 1,h,e^{ix},(1/h)·e^{(-1)·ix} > es un placer.

Ley: [ chocho = (n+(-1))·(11) + 1110111 & polla = (n+(-1))·(11) + 0111 ]

z(x) = < (1/n),h,e^{ix},(n/h)·e^{(-1)·ix} > es un placer.


Teorema:

Si f(x) es un homeomorfismo ==> f(E) = f( interior[E] ) [ || ] f( exterior[E] )

Demostración:

f( interior[E] ) = f( [ || ]-[k = 1]-[n][ D_{k} ] ) = [ || ]-[k = 1]-[n][ f(D_{k}) ]

f( exterior[E] ) = f( [&]-[k = 1]-[n][ E [ \ ] D_{k} ] ) = [&]-[k = 1]-[n][ f(E [ \ ] D_{k}) ] = ...

... [&]-[k = 1]-[n][ f(E) [ \ ] f(D_{k}) ] = f(E) [ \ ] [ || ]-[k = 1]-[n][ f(D_{k}) ]


Teorema:

Sea E = {0,(1/n),1,( 1+(-1)·(1/n) )}

Si f(x) es un homeomorfismo ==> f( interior[E] )+f( exterior[E] ) = 1

Demostración:

max{0,(1/n)}+min{1,( 1+(-1)·(1/n) )} = (1/n)+( 1+(-1)·(1/n) ) = 1

min{0,(1/n)}+max{1,( 1+(-1)·(1/n) )} = 0+1 = 1


Ley:

F·(1/sin(s)) = qg·(1/cos(s)) 

m·d_{tt}^{2}[x] = mu^{2}·r·sin(s)+(-F)

d_{tt}^{2}[x] = 0 <==> ( s = 0 || s = arc-cos( (qg)/(mu^{2}·r) ) )


Señor Don Casasayas:

max{x,y} = (1/2)·( (x+y)+|x+(-y)| )

min{x,y} = (1/2)·( (x+y)+|i|·|x+(-y)| )


Satélites:

Ley:

d_{t}[x] = a·( n^{n+1}+(-1)·x^{n+1} )^{( 1/(n+1) )}

x(t) = sin[n](at)

d_{t}[x] = (-a)·( n^{n+1}+(-1)·x^{n+1} )^{( 1/(n+1) )}

x(t) = cos[n](at)

Ley:

d_{t}[x] = a·( n^{n+1}+(-1)·(1/x)^{n+1} )^{(-1)·( 1/(n+1) )}

x(t) = sin[(-n)](at)

d_{t}[x] = (-a)·( n^{n+1}+(-1)·(1/x)^{n+1} )^{(-1)·( 1/(n+1) )}

x(t) = cos[(-n)](at)

Ley:

d_{t}[x] = a·( n^{n+1}+(-1)·x^{n+1} )^{(-1)·( 1/(n+1) )}

x(t) = sin[n:(-n)](at)

d_{t}[x] = (-a)·( n^{n+1}+(-1)·x^{n+1} )^{(-1)·( 1/(n+1) )}

x(t) = cos[n:(-n)](at)

Ley:

d_{t}[x] = a·( n^{n+1}+(-1)·(1/x)^{n+1} )^{( 1/(n+1) )}

x(t) = sin[(-n):n](at)

d_{t}[x] = (-a)·( n^{n+1}+(-1)·(1/x)^{n+1} )^{( 1/(n+1) )}

x(t) = cos[(-n):n](at)

Deducción:

d_{t}[ sin[n:(-n)](t) ] = cos[(-n):n](t)

d_{t}[ cos[n:(-n)](t) ] = (-1)·sin[(-n):n](t)

x^{n+1}+(1/y)^{n+1} = n^{n+1}

cos[n:(-n)](0) = n & sin[(-n):n](0) = oo

cos[(-n):n](0) = (1/n) & & sin[n:(-n)](0) = 0

Teorema:

sin[(-n):n](x) = ...

... ( sum[k_{i} = 0]-[oo][k_{0} = 0...(n+(-1))][ ...

... (-1)^{k_{1}...k_{n}}·( 1/(2k_{1}...k_{n}+1)! )·x^{2k_{1}...k_{n}+1} ] ...

... )^{ (-1)^{mod(2k+1)} }

cos[n:(-n)](x) = ...

... ( sum[k_{i} = 0]-[oo][k_{0} = 0...(n+(-1))][ ...

... (-1)^{k_{1}...k_{n}}·( 1/(2k_{1}...k_{n})! )·x^{2k_{1}...k_{n}} ] ...

... )^{ (-1)^{mod(2k+0)} }

sin[n:(-n)](x) = ...

... ( sum[k_{i} = 0]-[oo][k_{0} = 0...(n+(-1))][ ...

... (-1)^{k_{1}...k_{n}}·( 1/(2k_{1}...k_{n}+1)! )·x^{2k_{1}...k_{n}+1} ] ...

... )^{ (-1)^{mod(2k+0)} }

cos[(-n):n](x) = ...

... ( sum[k_{i} = 0]-[oo][k_{0} = 0...(n+(-1))][ ...

... (-1)^{k_{1}...k_{n}}·( 1/(2k_{1}...k_{n})! )·x^{2k_{1}...k_{n}} ] ...

... )^{ (-1)^{mod(2k+(-1))} }

Teorema:

sin[(-n)](x) = ...

... ( sum[k_{i} = 0]-[oo][k_{0} = 0...(n+(-1))][ ...

... (-1)^{k_{1}...k_{n}}·( 1/(2k_{1}...k_{n}+1)! )·x^{2k_{1}...k_{n}+1} ] ...

... )^{ (-1)^{mod(k+0)+1} }

cos[(-n)](x) = ...

... ( sum[k_{i} = 0]-[oo][k_{0} = 0...(n+(-1))][ ...

... (-1)^{k_{1}...k_{n}}·( 1/(2k_{1}...k_{n})! )·x^{2k_{1}...k_{n}} ] ...

... )^{ (-1)^{mod(k+0)+1} }


Clásico:

Llover [o] Ploure [o] Llovetzi

Llorar [o] Plorar [o] Lloratzi


Coger [o] Cullir [o] Cullitzi

Mojar [o] Mullar [o] Mullatzi